Skip to main content
Log in

Temperature and strain-rate effects on the deformation behaviors of nano-crystalline graphene sheets

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The deformation behavior of nanocrystalline graphene sheets is investigated by molecular dynamics (MD) simulation by coupling the effects of the temperature and strain rate. Mechanical deformation of graphene sheets, which is dominated by the competition between bond breaking and rotation, is essentially an atomic behavior. Similar to single-crystal graphene sheets, nanocrystalline graphene sheets usually exhibit bond breaking induced brittle fracture along grain boundaries after large elastic deformation. The elastic modulus decreases slightly with temperature as a result of softening but does not depend on the strain rate. A brittle-plastic transition by bond rotation and rearrangement under stress appears to occur at high temperature above 1000 K, but the ductility is unexpectedly reduced due to accelerated bond breaking. At small strain rates, it is easier for bonds to rearrange, vacancies to coalesce, and cracks to propagate in grain boundaries and plastic deformation with a larger activation volume occurs. However, at large strain rates, the relaxation time is too short for atomic bonds to rotate and rearrange under stress. Therefore, bond elongation and brittle fracture with a smaller activation volume takes place. The results demonstrate that the atomic behavior in grain boundaries is crucial to mechanical deformation in nanocrystalline graphene sheets, which is temperature and strain rate sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Novoselov et al., Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. K.I. Bolotin et al., Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  3. A.A. Balandin et al., Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  4. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  ADS  Google Scholar 

  5. J. Van den Brink, Nat. Nanotechnol. 2, 199 (2007)

    Article  ADS  Google Scholar 

  6. A.C. Neto, F. Guinea, N. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  7. S. Bae et al., Nat. Nanotechnol. 5, 574 (2010)

    Article  ADS  Google Scholar 

  8. R. Nair et al., Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  9. D. Reddy, L.F. Register, G.D. Carpenter, S.K. Banerjee, J. Phys. D 44, 313001 (2011)

    Article  ADS  Google Scholar 

  10. E. Huitema, Inf. Display 28, 6 (2012)

    Google Scholar 

  11. P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. Lett. 81, 5346 (1998)

    Article  ADS  Google Scholar 

  12. H. Gwon et al., Energy Environ. Sci. 4, 1277 (2011)

    Article  Google Scholar 

  13. F. Ma, Y. Sun, D. Ma, K. Xu, P.K. Chu, Acta Mater. 59, 6783 (2011)

    Article  Google Scholar 

  14. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  15. S. Stankovich et al., Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  16. R. Grantab, V.B. Shenoy, R.S. Ruoff, Science 330, 946 (2010)

    Article  ADS  Google Scholar 

  17. S.S. Terdalkar, S. Huang, H. Yuan, J.J. Rencis, T. Zhu, S. Zhang, Chem. Phys. Lett. 494, 218 (2010)

    Article  ADS  Google Scholar 

  18. C. Wei, K. Cho, D. Srivastava, Phys. Rev. B 67, 115407 (2003)

    Article  ADS  Google Scholar 

  19. H. Zhao, N. Aluru, J. Appl. Phys. 108, 064321 (2010)

    Article  ADS  Google Scholar 

  20. K. Min, N. Aluru, Appl. Phys. Lett. 98, 013113 (2011)

    Article  ADS  Google Scholar 

  21. M.C. Wang et al., J. Nano Res. 23, 43 (2013)

    Article  ADS  Google Scholar 

  22. J.H. Warner, E.R. Margine, M. Mukai, A.W. Robertson, F. Giustino, A.I. Kirkland, Science 337, 209 (2012)

    Article  ADS  Google Scholar 

  23. M. Wang, C. Yan, L. Ma, N. Hu, M. Chen, Comput. Mater. Sci. 54, 236 (2012)

    Article  Google Scholar 

  24. A. Carpio, L.L. Bonilla, F. de Juan, M.A. Vozmediano, New J. Phys. 10, 053021 (2008)

    Article  ADS  Google Scholar 

  25. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, J. Phys: Condens. Matter 14, 783 (2002)

    ADS  Google Scholar 

  26. O.A. Shenderova, D.W. Brenner, A. Omeltchenko, X. Su, L.H. Yang, Phys. Rev. B 61, 3877 (2000)

    Article  ADS  Google Scholar 

  27. J. Schiøtz, F.D. Di Tolla, K.W. Jacobsen, Nature 391, 561 (1998)

    Article  ADS  Google Scholar 

  28. X. Wei, B. Fragneaud, C.A. Marianetti, J.W. Kysar, Phys. Rev. B 80, 205407 (2009)

    Article  ADS  Google Scholar 

  29. Y. Sun, Y. Huang, F. Ma, D. Ma, T. Hu, K. Xu, Mater. Sci. Eng. B 180, 1 (2014)

    Article  Google Scholar 

  30. Z. Xu, M.J. Buehler, J. Phys: Condens. Matter 22, 485301 (2010)

    Google Scholar 

  31. O.V. Yazyev, S.G. Louie, Phys. Rev. B 81, 195420 (2010)

    Article  ADS  Google Scholar 

  32. L. Xu, N. Wei, Y. Zheng, Nanotechnol. 24, 505703 (2013)

    Article  ADS  Google Scholar 

  33. C. Carpenter, D. Maroudas, A. Ramasubramaniam, Appl. Phys. Lett. 103, 013102 (2013)

    Article  ADS  Google Scholar 

  34. R. Valiev, Nat. Mater. 3, 511 (2004)

    Article  ADS  Google Scholar 

  35. L. Yi, Z. Yin, Y. Zhang, T. Chang, Carbon 51, 373 (2013)

    Article  Google Scholar 

  36. A. Iskandarov, S. Dmitriev, Techn. Phys. Lett. 39, 185 (2013)

    Article  ADS  Google Scholar 

  37. T. Albrecht, H. Mizes, J. Nogami, Si. Park, C. Quate, Appl. Phys. Lett. 52, 362 (1988)

    Article  ADS  Google Scholar 

  38. Y.J. Sun, Y.H. Huang, F. Ma, D.Y. Ma, T.W. Hu, K.W. Xu, Mater. Sci. Eng. B 180, 1 (2014)

    Article  Google Scholar 

  39. J. Chen, L. Lu, K. Lu, Scr. Mater. 54, 1913 (2006)

    Article  Google Scholar 

  40. M.B. Nardelli, B.I. Yakobson, J. Bernholc, Phys. Rev. Lett. 81, 4656 (1998)

    Article  ADS  Google Scholar 

  41. K. Suenaga, H. Wakabayashi, M. Koshino, Y. Sato, K. Urita, S. Iijima, Nat. Nanotechnol. 2, 358 (2007)

    Article  ADS  Google Scholar 

  42. R.J. Asaro, S. Suresh, Acta Mater. 53, 3369 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Ma, Kewei Xu or Paul K. Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Huang, Y., Ma, F. et al. Temperature and strain-rate effects on the deformation behaviors of nano-crystalline graphene sheets. Eur. Phys. J. B 88, 135 (2015). https://doi.org/10.1140/epjb/e2015-50850-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-50850-x

Keywords

Navigation