Skip to main content
Log in

Fatty Acid Composition of Erythrocyte Phospholipids in Rats Exposed to Stress (Prolonged Swimming)

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The fatty acid composition of phospholipids was studied in rat erythrocytes after exhausting swimming. It was shown that this stressful exposure does not affect the fatty acid (FA) composition of erythrocyte phospholipids. However, differences in the variability of quantitatively dominant fatty acids were detected in stress-exposed animals compared to unstressed control. In saturated acids (C16:0, 18:0) and polyenoic arachidonic acid (C20:4ω6), the variability was close to its control values, while in unsaturated fatty acids (C18:1, C18:2ω6) it exceeded those 3–4 times. The obtained results indicate significant alterations in the unsaturated fatty acid composition of erythrocyte membrane phospholipids. Due to unsaturated fatty acids, a potential arises in the insulating layer between two surface charges of the erythrocyte plasma membrane. This additional internal potential, alongside with the potential difference between outer and inner surfaces of the erythrocyte plasma membrane, affects aqueous pores and Na+, K+-channels which jointly mediate diffusion of oxygen molecules. The revealed extraordinary variability of unsaturated fatty acids (C18:1, C18:2) with their mobile ω-electrons may relate to the mechanism of chemical interaction between phospholipid fatty acids in the hydrophobic zone of the erythrocyte plasma membrane due to phospholipid diffusion. Analogous mechanism of chemical interaction (via a proton jump from the hydronium ion to the water molecule) occurs in the hydrophilic (aqueous) zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhukov, E.K., Dykhatel’naya funktsiya krovi (Respiratory Function of Blood), Leningrad, 1937.

    Google Scholar 

  2. Korzhuev, P.A., Evolyutsiya dykhatel’noi funktsii krovi (Evlution of Respiratory Function of Blood), Moscow, Leningrad, 1949.

    Google Scholar 

  3. Zhitineva, L.D., Makarov, E.V., and Rudnitskaya, O.A., Evolyutsiya krovi (Evolution of Blood), Rostov-on-Don, 2011.

    Google Scholar 

  4. Korzhueva, P.A., Gemoglobin (Hemoglobin), Moscow, 1964.

    Google Scholar 

  5. Irzhak, L.I., Dzhozef Barkroft (Joseph Barkroft), Moscow, 1983.

    Google Scholar 

  6. Barcroft, J. and Orbeli, L., The influence of lactic acid upon the dissociation curve of blood, J. Physiol., 1910, vol. 41, pp. 355–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dodge, J.T., Mitchell, C., and Hanahan, D.J., The preparation and chemical characteristics of hemoglobin — free ghosts of human erythrocytes, Arch. Biochem. Biophys., 1963, vol. 100, p. 119.

    Article  CAS  PubMed  Google Scholar 

  8. Nelson, G.J., Lipid composition in erythrocytes in various mammalian species, Biochem. Biophys. Acta, 1967, vol. 144, pp. 221–232.

    Article  CAS  PubMed  Google Scholar 

  9. Agalakova, N.I., Lapin, A.V., and Gusev, G.P., Transport of potassium ions in erythrocytes of the frog Rana ridibunda, Zh. Evol. Biokhim. Fiziol., 1995, vol. 31, no. 2, pp. 161–162.

    CAS  PubMed  Google Scholar 

  10. Odushko, N.P. and Zelenina, Z.N., A method for studying the lipid composition of erythrocytes in diagnostics of ischemic heart disease, Lab. Delo, 1979, no. 7, pp. 390–393.

    Google Scholar 

  11. Benderitter, M., Vincent-Genod, L., Pouget, J.P., and Voisin, P., The cell membrane as a biosensor of oxidative stress induced by radiation exposure: multiparameter investigation, Radiat. Res., 2003, vol. 159, no. 4, pp. 471–483.

    Article  CAS  PubMed  Google Scholar 

  12. Maslova, M.N., Activity of erythrocyte membrane-bound enzymes under varied stress exposures, Fiziol. Zh. im. I.M. Sechenova, 1994, vol. 80, no. 7, pp. 76–80.

    CAS  Google Scholar 

  13. Maslova, M.N., Molecular mechanisms of stress, Ross. Fiziol. Zh., vol. 91, no. 11, pp. 1320–1328.

  14. Zabelinskii, S.A., Chebotareva, E.P., Shukolyukova, A.I., and Krivchenko, A.I., Phospholipids, fatty acids and hemoglobin in rat erythrocytes under stress conditions (swimming at low temperature), J. Evol. Biochem. Physiol., 2017, vol. 53, no. 1, pp. 17–24.

    Article  CAS  Google Scholar 

  15. Alberts, B., Johnson, A., Lewis, D., Reff, M., Roberts, K., and Walter, P., Molekulyarnaya biologiya kletki (Molecular Biology of the Cell), vol. 2, Moscow, Izhevsk, 2013.

    Google Scholar 

  16. Shishkina, L.N. and Shevchenko, O.G., Lipids of erythrocytes and their functional activity, Usp. Sovr. Biol., 2010, vol. 130, no. 6, pp. 587–602.

    CAS  Google Scholar 

  17. Harris, W.S. and Vjn Schacky, C., The Omega-3 index: a new risk factor for death from coronary heart disease? Prev. Med., 2004, vol. 39, pp. 212–220.

    Article  CAS  PubMed  Google Scholar 

  18. Harris, W.S., The Omega-3 index: as a risk factor for coronary heart disease, Am. J. Clin. Nutr., 2008, vol. 87, pp. 1997S–2002S.

    Article  CAS  PubMed  Google Scholar 

  19. Edwards, R., Peet, M., Shay, J., and Horrobin, D., Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients, J. Affect. Disord., 1998, vol. 48, pp. 149–155.

    Article  CAS  PubMed  Google Scholar 

  20. Witte, A.V., Kerti, L., Hermannstadter, H.M., Fiebach, J.B., Schreiber, S.J., Schuchardt, J.P., Hahn, A., and Floel, A., Long chain omega-3 fatty acids improve brain function and structure in older adults, Cereb. Cortex, 2013, vol. 24, pp. 3059–3068.

    Article  PubMed  Google Scholar 

  21. Kǜlzow, N., Witte, A.V., Kerti, L., Grittner, U., Schuchardt, J.P., Yahn, A., and Floel, A., Impact of omega-3 fatty acid supplementation on memory functions in healthy older adults, J. Alzheim. Dis., 2016, vol. 51, no. 3, pp. 713–725.

    Article  CAS  Google Scholar 

  22. Calder, P.C., Mechanism of action of (n-3) fatty acids, J. Nutr., 2012, vol. 142, no. 3, pp. 592S–599S.

    Article  CAS  PubMed  Google Scholar 

  23. Zarate, R., El Jbber-Vazdekis, N., Tejera, N., Perez, J.A., and Rodriguez, C., Significance of long chain polyunsaturated fatty acids in human health, 2017, Clin. Transl. Med., vol. 6, no. 1, pp. 25–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zabelinskii, S.A., Chebotareva, M.A., Tavrovskaya, T.V., Skverchinskaya, E.A., Shukolyukova, E.P., Maslova, M.N., and Krivchenko, A.I., Effect of stress exposures on some hematological and biochemical parameters of rat blood and on energetic intermolecular interactions in lipid extract under effect of light radiation, J. Evol. Biochem. Physiol., 2012, vol. 48, nos. 5–6, pp. 500–509.

    Article  CAS  Google Scholar 

  25. Samoilov, V.O., Meditsinskaya biofizika (Medical Biophysics), St. Petersburg, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Zabelinskii.

Additional information

Russian Text © S.A. Zabelinskii, M.A. Chebotareva, E.P. Shukolyukova, E.R. Nikitina, A.I. Krivchenko, 2019, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2019, Vol. 55, No. 1, pp. 37–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabelinskii, S.A., Chebotareva, M.A., Shukolyukova, E.P. et al. Fatty Acid Composition of Erythrocyte Phospholipids in Rats Exposed to Stress (Prolonged Swimming). J Evol Biochem Phys 55, 40–46 (2019). https://doi.org/10.1134/S0022093019010058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093019010058

Key words

Navigation