Skip to main content
Log in

Ferromagnetic Resonance Study of Biogenic Ferrihydrite Nanoparticles: Spin-Glass State of Surface Spins

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Ferrihydrite nanoparticles (2–3 nm in size), which are products of the vital activity of microorganisms, are studied by the ferromagnetic resonance method. The “core” of ferrihydrite particles is ordered antiferromagnetically, and the presence of defects leads to the appearance of an uncompensated magnetic moment in nanoparticles and the characteristic superparamagnetic behavior. It is established from the ferromagnetic resonance data that the field dependence of the frequency is described by the expression 2πν/γ = HR + HA(T=0)(1 − T/T*), where γ is the gyromagnetic ratio, HR is the resonance field, HA ≈ 7 kOe, and T* ≈ 50 K. The induced anisotropy HA is due to the spin-glass state of the near-surface regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Chuev, I. N. Mishchenko, S. P. Kubrin, and T. A. Lastovina, JETP Lett. 105, 700 (2017).

    Article  ADS  Google Scholar 

  2. S. Morup, D. E. Madsen, C. Frandsen, C. R. H. Bahl, and M. F. Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).

    ADS  Google Scholar 

  3. Y. L. Raikher and V. I. Stepanov, J. Phys.: Condens. Matter 20, 204120 (2008).

    ADS  Google Scholar 

  4. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, R14717 (1997).

    Article  ADS  Google Scholar 

  5. N. J. O. Silva, V. S. Amaral, and L. D. Carlos, Phys. Rev. B 71, 184408 (2005).

    Article  ADS  Google Scholar 

  6. A. Punnoose, T. Phanthavady, M. S. Seehra, N. Shah, and G. P. Huffman, Phys. Rev. B 69, 54425 (2004).

    Article  ADS  Google Scholar 

  7. M. S. Seehra, V. Singh, X. Song, S. Bali, and E. M. Eyring, J. Phys. Chem. Solids 71, 1362 (2010).

    Article  ADS  Google Scholar 

  8. S. I. Popkov, A. A. Krasikov, D. A. Velikanov, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, J. Magn. Magn. Mater. 483, 21 (2019).

    Article  ADS  Google Scholar 

  9. Y. V. Knyazev, D. A. Balaev, V. L. Kirillov, O. A. Bayukov, and O. N. Mart’yanov, JETP Lett. 108, 527 (2018).

    Article  ADS  Google Scholar 

  10. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 6321 (1999).

    Article  ADS  Google Scholar 

  11. T. Hiemstra, Geochim. Cosmochim. Acta 158, 179 (2015).

    Article  ADS  Google Scholar 

  12. M. S. Seehra, V. S. Babu, A. Manivannan, and J. W. Lynn, Phys. Rev. B 61, 3513 (2000).

    Article  ADS  Google Scholar 

  13. S. V. Stolyar, R. N. Yaroslavtsev, R. S. Iskhakov, O. A. Bayukov, D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, V. P. Ladygina, A. M. Vorotynov, and M. N. Volochaev, Phys. Solid State 59, 555 (2017).

    Article  ADS  Google Scholar 

  14. S. V. Stolyar, D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, R. N. Yaroslavtsev, O. A. Bayukov, M. N. Volochaev, and R. S. Iskhakov, J. Supercond. Nov. Magn. 31, 1133 (2018).

    Article  Google Scholar 

  15. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Appl. Phys. 120, 183903 (2016).

    Article  ADS  Google Scholar 

  16. E. Wajnberg, L. J. El-Jaick, M. P. Linhares, and D. M. S. Esquivel, J. Magn. Reson. 153, 69 (2001).

    Article  ADS  Google Scholar 

  17. M. P. Weir, T. J. Peters, and J. F. Gibson, Biochim. Biophys. Acta 828, 298 (1985).

    Article  Google Scholar 

  18. A. Punnoose, M. S. Seehra, J. van Tol, and L. C. Brunel, J. Magn. Magn. Mater. 288, 168 (2005).

    Article  ADS  Google Scholar 

  19. F. Baldi, A. Minacci, M. Pepi, and A. Scozzafava, FEMS Microbiol. Ecol. 36, 169 (2001).

    Article  Google Scholar 

  20. S. V. Stolyar, O. A. Bayukov, Y. L. Gurevich, E. A. Denisova, R. S. Iskhakov, V. P. Ladygina, A. P. Puzyr’, P. P. Pustoshilov, and M. A. Bitekhtina, Inorg. Mater. 42, 763 (2006).

    Article  Google Scholar 

  21. S. Kianpour, A. Ebrahiminezhad, M. Mohkam, A. M. Tamaddon, A. Dehshahri, R. Heidari, and Y. Ghasemi, J. Basic Microbiol. 57, 132 (2017).

    Article  Google Scholar 

  22. S. V. Stolyar, O. A. Bayukov, D. A. Balaev, R. S. Iskhakov, L. A. Ishchenko, V. P. Ladygina, and R. N. Yaroslavtsev, J. Optoelectron. Adv. Mater. 17, 968 (2015).

    Google Scholar 

  23. V. P. Ladygina, K. V. Purtov, S. V. Stoljar, R. S. Iskhakov, O. A. Bajukov, J. L. Gurevich, K. G. Dobretsov, and L. A. Ishchenko, Patent No. EA018956 (2013).

  24. L. Anghel, M. Balasoiu, L. A. Ishchenko, S. V. Stolyar, T. S. Kurkin, A. V. Rogachev, A. I. Kuklin, Y. S. Kovalev, Y. L. Raikher, R. S. Iskhakov, and G. Duca, J. Phys.: Conf. Ser. 351, 12005 (2012).

    Google Scholar 

  25. D. A. Velikanov, Sib. J. Sci. Technol. 2 (48), 176 (2013).

    Google Scholar 

  26. V. I. Tugarinov, I. Y. Makievskii, and A. I. Pankrats, Instrum. Exp. Tech. 47, 472 (2004).

    Article  Google Scholar 

  27. S. V. Stolyar, D. A. Balaev, V. P. Ladygina, et al., J. Supercond. Nov. Magn. 31, 2297 (2018).

    Article  Google Scholar 

  28. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, O. A. Bayukov, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Magn. Magn. Mater. 410, 171 (2016).

    Article  ADS  Google Scholar 

  29. S. V. Stolyar, O. A. Bayukov, Y. L. Gurevich, V. P. Ladygina, R. S. Iskhakov, and P. P. Pustoshilov, Inorg. Mater. 43, 638 (2007).

    Article  Google Scholar 

  30. D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and E. D. Khilazheva, JETP Lett. 98, 139 (2013).

    Article  ADS  Google Scholar 

  31. D. A. Balaev, S. I. Popkov, A. A. Krasikov, A. D. Balaev, A. A. Dubrovskiy, S. V. Stolyar, R. N. Yaroslavtsev, V. P. Ladygina, and R. S. Iskhakov, Phys. Solid State 59, 1940 (2017).

    Article  ADS  Google Scholar 

  32. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, S. V. Semenov, O. A. Bayukov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and L. A. Ishchenko, J. Exp. Theor. Phys. 119, 479 (2014).

    Article  Google Scholar 

  33. C. G. Chilom, D. M. Gazdaru, M. Balasoiu, M. Bacalum, S. V. Stolyar, and A. I. Popescu, Rom. J. Phys. 62, 701 (2017).

    Google Scholar 

  34. E. L. Duarte, R. Itri, E. Lima, M. S. Baptista, T. S. Berquó, and G. F. Goya, Nanotechnology 17, 5549 (2006).

    Article  ADS  Google Scholar 

  35. T. S. Berquó, J. J. Erbs, A. Lindquist, R. L. Penn, and S. K. Banerjee, J. Phys.: Condens. Matter 21, 176005 (2009).

    ADS  Google Scholar 

  36. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baro, Phys. Rep. 422 (3), 65 (2005).

    Article  ADS  Google Scholar 

  37. J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).

    Article  ADS  Google Scholar 

  38. A. P. Malozemoff, J. Appl. Phys. 63, 3874 (1988).

    Article  ADS  Google Scholar 

  39. B. Martinez, X. Obradors, L. Balcells, A. Rouanet, and C. Monty, Phys. Rev. Lett. 80, 181 (1998).

    Article  ADS  Google Scholar 

  40. E. Winkler, R. D. Zysler, M. V. Mansilla, and D. Fiorani, Phys. Rev. B 72, 132409 (2005).

    Article  ADS  Google Scholar 

  41. Y. A. Koksharov, S. P. Gubin, I. D. Kosobudsky, G. Y. Yurkov, D. A. Pankratov, L. A. Ponomarenko, M. G. Mikheev, M. Beltran, Y. Khodorkovsky, and A. M. Tishin, Phys. Rev. B 63, 12407 (2000).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-02-40137.This work was supported by the Russian Foundation for Basic Research, by the Government of Krasnoyarsk krai, by the Krasnoyarsk Regional Fund for the Support of Scientific and Technical Activities (project no. 19-42-240012 r_a “Magnetic Resonance in Ferrihydrite Nanoparticles: Effects Associated with the Core-Shell Structure”), and by the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. MK-1263.2020.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stolyar.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 3, pp. 197–202.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolyar, S.V., Balaev, D.A., Ladygina, V.P. et al. Ferromagnetic Resonance Study of Biogenic Ferrihydrite Nanoparticles: Spin-Glass State of Surface Spins. Jetp Lett. 111, 183–187 (2020). https://doi.org/10.1134/S0021364020030145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020030145

Navigation