Skip to main content
Log in

The development of Campbell integration system applied in high particle flux measurement

  • Application of Computers in Experiments
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Campbell Mode is a method widely used in nuclear signal processing. In this article, we introduce the design of the new system based on the Campbell integration measurement applied in NFM (neutron flux measurement) systems for ITER plasma diagnose. In this article, we introduce a digital particle flux measurement system based on Campbell integration theory. A subsequent series of experiment are conducted to test the digital Campbell system performance, which proves that the Campbell integration system is competent for the plasma diagnose in ITER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, J.W., Yang, Q.W., Xiao, G.S., Zhang,W., Song, X.Y., and Li, X., Plasma Sci. Technol., 2008, vol. 10, no. 2, p. 141. doi 10.1088/1009-0630/10/2/01

    Article  ADS  Google Scholar 

  2. Yang, J.W., Song, X.Y., Zhang, W., Li, X, Lee, W.Z., Wang, S.Q., Xiao, G.S., Yang, B., and Lu, S.T., Plasma Sci. Technol., 2005, vol. 25, no. 2, p. 2860. doi 10.3969/ j.issn.0254-6086.2005.02.005

    ADS  Google Scholar 

  3. Geslot, B., Vermeeren, L., Filliatre,P., Lopez, A.L., Barbot, L., Jammes,C., Breaud, S., Oriol, L., and Villard, J.F., Rev. Sci. Inst., 2011, vol. 82, no. 3, p. 033504. doi 10.1063/1.3554439

    Article  ADS  Google Scholar 

  4. Fourmentel, D., Filliatre, P., Barbot, L., Villard, J.F., Lyoussi, A., Geslot, B., Carcreff, H., Malo, J.Y., and Reynard-Carette, C., IEEE Trans. Nuclear Sci., 2014, vol. 61, no. 4, p. 2285. doi 10.1109/TNS.2014.2300634

    Article  ADS  Google Scholar 

  5. Weiss, H.A., Atomkernenergie, 1969, vol. 14, no. 6, p. 375.

    Google Scholar 

  6. Schmidt, K., Kerntechnik, 1974, vol. 16, no. 10, p. 437.

    Google Scholar 

  7. England, A.C., Hendel, H.W., and Nieschmidt, E.B., Rev Sci. Inst., 1986, vol. 57, no. 8, p. 1754. doi 10.1063/ 1.1139171

    Article  ADS  Google Scholar 

  8. Kropik, M., Proc. Int. Conf. Nuclear Energy in Central Europe 2000, Bled, Slovenia, 2000, pp. 773–780.

  9. Kropik, M. and Matejka, K., Kerntechnik, 1999, vol. 64, nos. 5–6, p. 274.

    Google Scholar 

  10. Cibils, R.M., Busto, A., Gonella, J.L., Martinez, R., Chielens, A.J., Otero, J.M., Nunez, M., and Tropea, S.E., Space Technol. Applications Int. Forum, 2008, vol. 969, p. 316.

    ADS  Google Scholar 

  11. Huang, Z.P., Zhong, M.G., and Xiang, G.H., Nuclear Electronics Detect. Technol., 2013, vol. 9, no. 9, p. 1054. doi 10.3969/j.issn.0258-0934.2013.09.004

    Google Scholar 

  12. Li, S.P., Xu, S.F., Cao, H.R., Yuan, G.L., Yang, Q.W., and Yin, Z.J., Appl. Rad. Isotopes, 2013, vol. 72, p. 30. doi 10.1016/j.apradiso.2012.10.00

    Article  Google Scholar 

  13. Vermeeren, L., Wéber, M., Oriol, L., Breaud, S., Filliatre, P., Geslot, B., Jammes, C., Normand, S., and Lescop, B., Proc. The 1st Int. Conf. on Advanc. in Nucl. Instrum., Measur. Methods and their Appl. (ANIMMA), Marseille, France, 2011, vol. 58, no. 2, p. 362. doi 10.1109/ANIMMA.2009.5503801

    Google Scholar 

  14. Geslot, B., Loiseau, P., Blanc de Lanaute, N., Filliatre, P., Jammes, C., Breaud, S., Villard, J.F., and Blaise, P., IEEE Trans. Nucl. Sci., 2014, vol. 61, no. 4, p. 2235. doi 10.1109/TNS.2013.2291070

    Article  ADS  Google Scholar 

  15. Rivero Gutierrez, T., Benitez Read, J.S., Palacios Hemandez, J.C., Segovia de Los Rios, A., and Longoria Gandara, L.C., Int. J. Nucl. Energy Sci. Technol., 2010, vol. 5, no. 2, p. 91. doi 10.1504/IJNEST.2010.030551

    Article  Google Scholar 

  16. Ostrowski, A.R., Nuclear Power Plant Control Instrum., Cannes, France, 1978, p. 24.

    Google Scholar 

  17. Li, S.P., Xu, X.F., Cao, H.R., Yang, Q.W., and Yin, Z.J., Nuclear Sci. Techn., 2013, vol. 24, no. 4, p. 57.

    Google Scholar 

  18. Cao, H.R., Li, S.P., Xu, X.F., Yang, Q.W., and Yin, Z.J., Nuclear Sci. Techniq., 2012, vol. 23, no. 2, p. 114.

    Google Scholar 

  19. Andreas, R., Timonthy, E.H., Ron, F., and Kerr, P.L., IEEE Nuclear Sci. Symp. Conf. Record, Honolulu HI USA, 2007, vol. 1, p. 681. doi 0.1109/NSSMIC.2007. 4436424

    Google Scholar 

  20. Pál, L. and Pázsit, I., Nuclear Instrum. Methods in Phys. Res. Sec. A–Acceler., Spectr., Detect. Assoc. Equip., 2015, vol. 794, p. 90. doi 10.1016/j.nima.2015.05.006

    Article  ADS  Google Scholar 

  21. Vermeeren, L., Weber, M., Oriol, L., Breaud, S., Filliatre, P., Geslot, B., Jammes, C., Normand, S., and Lescop, B., IEEE Trans. Nucl. Sci., 2011, vol. 58, no. 2, p. 362. doi 10.1109/TNS.2011.2113356

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Di Wang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WD., Cao, J., Zhou, X. et al. The development of Campbell integration system applied in high particle flux measurement. Instrum Exp Tech 60, 789–794 (2017). https://doi.org/10.1134/S0020441217060185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217060185

Navigation