Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 1, pp 9–15 | Cite as

Quantum-Chemical Calculations of the Primary Reactions of Thermal Decomposition of Cyclopentadienone

  • A. R. GhildinaEmail author
  • A. M. Mebel
  • I. A. Medvedkov
  • V. N. Azyazov
Article

Abstract

The geometric structures, vibration frequencies, and energies of the reactants, products, and transition states in the decomposition of C5H4O were evaluated by quantum chemical calculations using the CCSD(T)-F12/vtz-f12B method. The calculated energy barriers for the two most probable pyrolysis pathways of C5H4O, equal to 96.3 and 96.5 kcal/mol, respectively, are evidence that the pyrolysis proceeds at a high temperature, and the most likely reaction products are vinylacetylene and carbon monoxide. It is shown that the formation of products such as cyclobutadiene, acetylene, and propadienal can be explained by the occurrence of an energetically favorable pathway.

Keywords

combustion pyrolysis polycyclic aromatic hydrocarbons cyclopentadienone vinylacetylene acetylene propadienal reaction pathway density functional method ab initio method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Frenklach, “Reaction Mechanism of Soot Formation in Flames,” Proc. Natl Acad. Sci. USA, No. 4, 2028–2037 (2002).Google Scholar
  2. 2.
    C. A. Taatjes, D. L. Osborn, T. M. Selby, et al., “Products of the Benzene + O(3P) Reaction,” J. Phys. Chem. A 9 (114), 3355–3370 (2010).CrossRefGoogle Scholar
  3. 3.
    H. Richter and J. B. Howard, “Formation of Polycyclic Aromatic Hydrocarbons and their Growth to Soot—A Review of Chemical Reaction Pathways,” Prog. Energy Combust. Sci. 4 (26), 565–608 (2000).CrossRefGoogle Scholar
  4. 4.
    A. M. Starik, N. S. Titova, and S. A. Torokhov, “Kinetics of Oxidation and Combustion of Complex Hydrocarbon Fuels: Aviation Kerosene,” Fiz. Goreniya Varyva 49 (4), 12–30 (2013) [Combust. Expl. Shock Waves 49 (4), 392–408 (2013)].Google Scholar
  5. 5.
    S. Takamasa, N. Masakazu, and M. Akira, “High-Temperature Reactions of OH Radicals with Benzene and Toluene,” J. Phys. Chem. A, No. 110, 5081–5090 (2006).CrossRefGoogle Scholar
  6. 6.
    H. X. Zhang, S. I. Ahonkhai, and M. H. Back, “Rate Constants for Abstraction of Hydrogen from Benzene, Toluene, and Cyclopentane by Methyl and Ethyl Radicals over the Temperature Range 650–770 K,” Can. J. Chem. 67 (10), 1541–1549 (1989).CrossRefGoogle Scholar
  7. 7.
    I. V. Tokmakov, G.-S. Kim, V. V. Kislov, et al., “The Reaction of Phenyl Radical with Molecular Oxygen: AG2M Study of the Potential Energy Surface,” J. Phys. Chem. A 109 (27), 6114–6127 (2005).CrossRefGoogle Scholar
  8. 8.
    D. S. N. Parker, R. I. Kaiser, T. P. Troy, et al., “Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems,” J. Phys. Chem. A 119 (28), 7145–7154 (2014).CrossRefGoogle Scholar
  9. 9.
    W. M. Baird, “Carcinogenic Polycyclic Aromatic Hydrocarbon-dna Adducts and Mechanism of Action,” Environ. Mol. Mutagen. 45 (2-3), 106–114 (2005).CrossRefGoogle Scholar
  10. 10.
    B. J. Finlayson-Pittsa and J. N. Pitts, “Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles,” Science 276, 1045–1052 (1997).CrossRefGoogle Scholar
  11. 11.
    H. Richter and J. B. Howard, “Formation and Consumption of Single-Ring Aromatic Hydrocarbons and Their Precursors in Premixed Acetylene, Ethylene and Benzene Flames,” Phys. Chem. 4, 2038–2055 (2002).Google Scholar
  12. 12.
    D. S. N. Parker, F. Zhang, Y. S. Kim, et al., “Low Temperature Formation of Naphthalene and Its Role in the Synthesis of Pahs (Polycyclic Aromatic Hydrocarbons) in the Interstellar Medium,” Proc. Natl Acad. Sci. USA 109 (1), 53–58 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    C. Venkat, K. Brezinsky, and I. Glassman, “High Temperature Oxidation of Aromatic Hydrocarbons,” Proc. Combust. Inst. 19, 143–152 (1982).CrossRefGoogle Scholar
  14. 14.
    A. R. Ghildina, A. D. Oleinikov, A. M. Mebel, and V. N. Azyazov, “Products of Reaction C5H4O + H: Quantum-Chemical Studies,” in Nonequilibrium Processes in Physics and Chemistry (Torus Press, Moscow, 2016), pp. 50–56.Google Scholar
  15. 15.
    D. J. Robichaud, A. M. Scheer, C. Mukarakate, et al., “Unimolecular Thermal Decomposition of Dimethoxybenzenes,” J. Chem. Phys. 140 (23), 234302 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. B.01 (Gaussian, Inc.,Wallingford, 2010).Google Scholar
  17. 17.
    H.-J. Werner, P. J. Knowles, R. Lindh, et al. MOLPRO, Ver. 2012.1. A Package of ab initio Programs (Univ. Coll. Cardiff Consult., Cardiff, 2012), p. 555.Google Scholar
  18. 18.
    G. E. Scuseria, C. L. Janssen, and H. F. Schaefer, “An Efficient Reformulation of the Cclosed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equations,” J. Chem. Phys. 89, 7382 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    G. E. Scuseria and H. F. Schaefer, “Is Coupled Cluster Singles and Doubles (CCSD) More Computationally Intensive than Guadratic Configuration Interaction (QCISD)?” J. Chem. Phys. 90, 3700 (1989).ADSCrossRefGoogle Scholar
  20. 20.
    T. B. Adler, G. Knizia, and H.-J. Werner, “A Simple and Efficient CCSD(T)-F12 Approximation,” J. Chem. Phys. 127, 221106 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    M. Y. Zhang, C. Wesdemiotis, M. Marchetti, et al., “Characterization of Four C4H4 Molecules and Cations by Neutralization-Reionization Mass Spectrometry,” J. Amer. Chem. Soc. 111, (22), 8341–8346 (1989).CrossRefGoogle Scholar
  22. 22.
    H. Wang and K. Brezinsky, “Computational Study on the Thermochemistry of Cyclopentadiene Derivatives and Kinetics of Cyclopentadienone Thermal Decomposition,” J. Phys. Chem. A 102 (9), 1530–1541 (1998).CrossRefGoogle Scholar
  23. 23.
    A. M. Mebel, V. V. Kislov, and R. I. Kaiser, “Ab Initio/Rice–Ramsperger–Kassel–Marcus study of the Singlet C4H4 Potential Energy Surface and of the Reactions of C2(X1S+ g ) with C4H4(X1A+ 1g) and C(1D) with C3H4 (Allene and Methylacetylene),” J. Chem. Phys. 125 (13), 133113 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    A. M. Scheer, C. Mukarakate, D. J. Robichaud, et al., “Thermal Decomposition Mechanisms of the Methoxyphenols: Formation of Phenol, Cyclopentadienone, Vinylacetylene and Acetylene,” J. Phys. Chem. A 115, 11381–11389 (2011).CrossRefGoogle Scholar
  25. 25.
    Y. Georgievskii, J. A. Miller, M. P. Burke, and S. J. Klippenstein, “Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions,” J. Phys. Chem. A, No. 117, 12146 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. R. Ghildina
    • 1
    • 2
    Email author
  • A. M. Mebel
    • 3
  • I. A. Medvedkov
    • 1
  • V. N. Azyazov
    • 1
    • 2
  1. 1.Korolev Samara National Research UniversitySamaraRussia
  2. 2.Samara Department of the Lebedev Physical InstituteRussian Academy of SciencesSamaraRussia
  3. 3.Florida International UniversityMiamiUSA

Personalised recommendations