Skip to main content
Log in

Quantum-Chemical Calculations of the Primary Reactions of Thermal Decomposition of Cyclopentadienone

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The geometric structures, vibration frequencies, and energies of the reactants, products, and transition states in the decomposition of C5H4O were evaluated by quantum chemical calculations using the CCSD(T)-F12/vtz-f12B method. The calculated energy barriers for the two most probable pyrolysis pathways of C5H4O, equal to 96.3 and 96.5 kcal/mol, respectively, are evidence that the pyrolysis proceeds at a high temperature, and the most likely reaction products are vinylacetylene and carbon monoxide. It is shown that the formation of products such as cyclobutadiene, acetylene, and propadienal can be explained by the occurrence of an energetically favorable pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Frenklach, “Reaction Mechanism of Soot Formation in Flames,” Proc. Natl Acad. Sci. USA, No. 4, 2028–2037 (2002).

    Google Scholar 

  2. C. A. Taatjes, D. L. Osborn, T. M. Selby, et al., “Products of the Benzene + O(3P) Reaction,” J. Phys. Chem. A 9 (114), 3355–3370 (2010).

    Article  Google Scholar 

  3. H. Richter and J. B. Howard, “Formation of Polycyclic Aromatic Hydrocarbons and their Growth to Soot—A Review of Chemical Reaction Pathways,” Prog. Energy Combust. Sci. 4 (26), 565–608 (2000).

    Article  Google Scholar 

  4. A. M. Starik, N. S. Titova, and S. A. Torokhov, “Kinetics of Oxidation and Combustion of Complex Hydrocarbon Fuels: Aviation Kerosene,” Fiz. Goreniya Varyva 49 (4), 12–30 (2013) [Combust. Expl. Shock Waves 49 (4), 392–408 (2013)].

    Google Scholar 

  5. S. Takamasa, N. Masakazu, and M. Akira, “High-Temperature Reactions of OH Radicals with Benzene and Toluene,” J. Phys. Chem. A, No. 110, 5081–5090 (2006).

    Article  Google Scholar 

  6. H. X. Zhang, S. I. Ahonkhai, and M. H. Back, “Rate Constants for Abstraction of Hydrogen from Benzene, Toluene, and Cyclopentane by Methyl and Ethyl Radicals over the Temperature Range 650–770 K,” Can. J. Chem. 67 (10), 1541–1549 (1989).

    Article  Google Scholar 

  7. I. V. Tokmakov, G.-S. Kim, V. V. Kislov, et al., “The Reaction of Phenyl Radical with Molecular Oxygen: AG2M Study of the Potential Energy Surface,” J. Phys. Chem. A 109 (27), 6114–6127 (2005).

    Article  Google Scholar 

  8. D. S. N. Parker, R. I. Kaiser, T. P. Troy, et al., “Toward the Oxidation of the Phenyl Radical and Prevention of PAH Formation in Combustion Systems,” J. Phys. Chem. A 119 (28), 7145–7154 (2014).

    Article  Google Scholar 

  9. W. M. Baird, “Carcinogenic Polycyclic Aromatic Hydrocarbon-dna Adducts and Mechanism of Action,” Environ. Mol. Mutagen. 45 (2-3), 106–114 (2005).

    Article  Google Scholar 

  10. B. J. Finlayson-Pittsa and J. N. Pitts, “Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles,” Science 276, 1045–1052 (1997).

    Article  Google Scholar 

  11. H. Richter and J. B. Howard, “Formation and Consumption of Single-Ring Aromatic Hydrocarbons and Their Precursors in Premixed Acetylene, Ethylene and Benzene Flames,” Phys. Chem. 4, 2038–2055 (2002).

    Google Scholar 

  12. D. S. N. Parker, F. Zhang, Y. S. Kim, et al., “Low Temperature Formation of Naphthalene and Its Role in the Synthesis of Pahs (Polycyclic Aromatic Hydrocarbons) in the Interstellar Medium,” Proc. Natl Acad. Sci. USA 109 (1), 53–58 (2012).

    Article  ADS  Google Scholar 

  13. C. Venkat, K. Brezinsky, and I. Glassman, “High Temperature Oxidation of Aromatic Hydrocarbons,” Proc. Combust. Inst. 19, 143–152 (1982).

    Article  Google Scholar 

  14. A. R. Ghildina, A. D. Oleinikov, A. M. Mebel, and V. N. Azyazov, “Products of Reaction C5H4O + H: Quantum-Chemical Studies,” in Nonequilibrium Processes in Physics and Chemistry (Torus Press, Moscow, 2016), pp. 50–56.

    Google Scholar 

  15. D. J. Robichaud, A. M. Scheer, C. Mukarakate, et al., “Unimolecular Thermal Decomposition of Dimethoxybenzenes,” J. Chem. Phys. 140 (23), 234302 (2014).

    Article  ADS  Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Rev. B.01 (Gaussian, Inc.,Wallingford, 2010).

    Google Scholar 

  17. H.-J. Werner, P. J. Knowles, R. Lindh, et al. MOLPRO, Ver. 2012.1. A Package of ab initio Programs (Univ. Coll. Cardiff Consult., Cardiff, 2012), p. 555.

    Google Scholar 

  18. G. E. Scuseria, C. L. Janssen, and H. F. Schaefer, “An Efficient Reformulation of the Cclosed-Shell Coupled Cluster Single and Double Excitation (CCSD) Equations,” J. Chem. Phys. 89, 7382 (1988).

    Article  ADS  Google Scholar 

  19. G. E. Scuseria and H. F. Schaefer, “Is Coupled Cluster Singles and Doubles (CCSD) More Computationally Intensive than Guadratic Configuration Interaction (QCISD)?” J. Chem. Phys. 90, 3700 (1989).

    Article  ADS  Google Scholar 

  20. T. B. Adler, G. Knizia, and H.-J. Werner, “A Simple and Efficient CCSD(T)-F12 Approximation,” J. Chem. Phys. 127, 221106 (2007).

    Article  ADS  Google Scholar 

  21. M. Y. Zhang, C. Wesdemiotis, M. Marchetti, et al., “Characterization of Four C4H4 Molecules and Cations by Neutralization-Reionization Mass Spectrometry,” J. Amer. Chem. Soc. 111, (22), 8341–8346 (1989).

    Article  Google Scholar 

  22. H. Wang and K. Brezinsky, “Computational Study on the Thermochemistry of Cyclopentadiene Derivatives and Kinetics of Cyclopentadienone Thermal Decomposition,” J. Phys. Chem. A 102 (9), 1530–1541 (1998).

    Article  Google Scholar 

  23. A. M. Mebel, V. V. Kislov, and R. I. Kaiser, “Ab Initio/Rice–Ramsperger–Kassel–Marcus study of the Singlet C4H4 Potential Energy Surface and of the Reactions of C2(X1S+ g ) with C4H4(X1A+ 1g) and C(1D) with C3H4 (Allene and Methylacetylene),” J. Chem. Phys. 125 (13), 133113 (2006).

    Article  ADS  Google Scholar 

  24. A. M. Scheer, C. Mukarakate, D. J. Robichaud, et al., “Thermal Decomposition Mechanisms of the Methoxyphenols: Formation of Phenol, Cyclopentadienone, Vinylacetylene and Acetylene,” J. Phys. Chem. A 115, 11381–11389 (2011).

    Article  Google Scholar 

  25. Y. Georgievskii, J. A. Miller, M. P. Burke, and S. J. Klippenstein, “Reformulation and Solution of the Master Equation for Multiple-Well Chemical Reactions,” J. Phys. Chem. A, No. 117, 12146 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Ghildina.

Additional information

Original Russian Text © A.R. Ghildina, A.M. Mebel, I.A. Medvedkov, V.N. Azyazov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghildina, A.R., Mebel, A.M., Medvedkov, I.A. et al. Quantum-Chemical Calculations of the Primary Reactions of Thermal Decomposition of Cyclopentadienone. Combust Explos Shock Waves 54, 9–15 (2018). https://doi.org/10.1134/S0010508218010021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508218010021

Keywords

Navigation