Skip to main content
Log in

DNA Aptamers to Thrombin Exosite I. Structure-Function Relationships and Antithrombotic Effects

  • Regular Paper
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

DNA aptamers (oligonucleotides) interacting with thrombin exosite I contain G-quadruplex, two T-T, and one T-G-T loops in their structure. They prevent exosite I binding with fibrinogen and thrombin receptors on platelet surface, thereby suppressing thrombin-stimulated formation of fibrin from fibrinogen and platelet aggregation. Earlier, we synthe-sized original antithrombin aptamer RE31 (5′-GTGACGTAGGTTGGTGTGGTTGGGGCGTCAC-3′) that contained (in addition to G-quadruplex) a hinge region connected to six pairs of complementary bases (duplex region). In this study, we compared properties of RE31 aptamer and its analogues containing varying number of bases in the duplex region and nucleotide insertions in the hinge region. Reduction in the number of nucleotides in the duplex region by 1 to 4 pairs (in comparison with RE31 aptamer) resulted in the decrease of the structural stability of aptamers (manifested as lower melting temperatures) and their ability to inhibit thrombin-stimulated fibrin formation in human blood plasma in tests of thrombin, prothrombin, and activated partial thromboplastin times. However, an increase in the number of bases by 1 to 2 pairs did not cause significant changes in the stability and antithrombin activity of the aptamers. Insertions into the hinge region of RE31 aptamer decreased its antithrombin activity. Investigation of RE31 antithrombotic properties demonstrated that RE31 (i) slowed down thrombin formation in human blood plasma (thrombin generation test), (ii) accelerated lysis of fibrin clot by tissue plasminogen activator in in vitro model, and (iii) suppressed arterial thrombosis in in vivo model. Based on the obtained data, RE31 aptamer can be considered as a potentially effective antithrombotic compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APTT:

activated partial thromboplastin time

PCI:

potato carboxypeptidase inhibitor

TAFI:

thrombin-activated fibrinolysis inhibitor

TBA:

thrombin-binding aptamer

tPA:

tissue plasminogen activator

References

  1. Keefe, A. D., Pai, S., and Ellington, A. (2010) Aptamers as therapeutics, Nat. Rev. Drug Discov., 9, 537–550. doi: 10.1038/nrd3141.

    Article  CAS  Google Scholar 

  2. Ni, X., Castanres, M., Mukherjee, A., and Lupoid, S. E. (2011) Nucleic acid aptamers: clinical application and promising new horizons, Curr. Med. Chem., 18, 4206–4214.

    Article  CAS  Google Scholar 

  3. Li, W., Wang, K., Zhao, M., Yang, X., Chen, M., and Lan, X. (2014) Development of aptamer oligonucleotides as anticoagulants and antithrombotics for cardiovascular diseases: current status, Thromb. Res., 134, 769–773. doi: 10.1016/j.thromres.2014.05.021.

    Article  CAS  Google Scholar 

  4. Crawley, J. T., Zanardelli, S., Chion, C. K., and Lane, D. A. (2007) The central role of thrombin in hemostasis, J. Thromb. Haemost., 5, 95–101. doi: 10.1111/j.1538-7836.2007.02500.x.

    Article  CAS  Google Scholar 

  5. Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., and Toole, J. J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature.355, 564–566. doi: 10.1038/355564a0.

    Article  CAS  Google Scholar 

  6. Macaya, R. F., Schultze, P., Smith, F. W., Roe, J. A., and Feigon, J. (1993) Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution, Proc. Natl. Acad. Sci. USA.90, 3745–3749. doi: 10.1073/pnas.90.8.3745.

    Article  CAS  Google Scholar 

  7. Padmanabhan, K. P., Ferrara, J. D., Sadker, J. E., and Tulinsky, A. (1993) The structure of α-thrombin inhibited by a 15-mer single-stranded DNA aptamer, J. Biol. Chem., 268, 17651–17654. doi: 10.2210/pdb1hut/pdb.

    CAS  PubMed  Google Scholar 

  8. Russo Krauss, I. R., Spiridonova, V., Pica, A., Napolitano, V., and Sica, F. (2016) Different duplex/quadruplex junctions determine the properties of antithrombin aptamers with mixed folding, Nucleic Acids Res., 44, 983–991. doi: 10.1093/nar/gkv1384.

    Article  Google Scholar 

  9. Dobrovolsky, A. B., Titaeva, E. V., Khaspekova, S. G., Spiridonova, V. A., Kopylov, A. M., and Mazurov, A. V. (2009) Inhibition of thrombin activity with DNA aptamers, Bull. Exp. Biol. Med., 148, 33; doi: 10.1007/s10517-009-0627-7.

    Article  CAS  Google Scholar 

  10. Spiridonova, V. A., Golovin, A. V., Kopylov, A. M., Dobrovolsky, A. B., and Mazurov, A. V. (2010) Aptameric oligonucleotide–direct inhibitor of thrombin, RF Patent 2401306, Byull. Izobret., no. 28.

    Google Scholar 

  11. Russo Krauss, I., Napolitano, V., Petraccone, L., Troisi, R., Spiridonova, V., Mattia, C. A., and Sica, F. (2018) Duplex/quadruplex oligonucleotides: role of the duplex domain in the stabilization of a new generation of highly effective antithrombin aptamers, Int. J. Biol. Macromol., 107 (Pt. B), 1697–1705; doi: 10.1016/j.ijbiomac.2017.10.033.

    Article  CAS  Google Scholar 

  12. Mazurov, A. V., Titaeva, E. V., Khaspekova, S. G., Storozhilova, A. N., Spiridonova, V. A., Kopylov, A. M., and Dobrovolsky, A. B. (2011) Characteristics of a new aptamer, direct inhibitor of thrombin, Bull. Exp. Biol. Med., 150, 422–425. doi: 10.1007/s10517-011-1158-6.

    Article  CAS  Google Scholar 

  13. Spiridonova, V. A., Golovin, A. V., Kopylov, A. M., Dobrovolsky, A. B., and Mazurov, A. V. (2011) Modified DNA aptamers that inhibit thrombin activity, RF Patent 2410432, Byull. Izobret., no. 3.

    Google Scholar 

  14. Nagatoishi, S., Tanaka, Y., and Tsumoto, K. (2007) Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizingcation-deficient conditions, Biochem. Biophys. Res. Commun., 352, 812–817. doi: 10.1016/j.bbrc.2006.11.088.

    Article  CAS  Google Scholar 

  15. Dolinnaya, N. G., Ogloblina, A M., and Yakubovskaya, M. G. (2016) Structure, properties, and biological relevance of the DNA and RNA G-quadruplexes: overview 50 years after their discovery, Biochemistry (Moscow).81, 1602–1649; doi: 10.1134/S0006297916130034.

    Article  CAS  Google Scholar 

  16. Mutch, N. J., Thomas, L., Moore, N. R., Lisiak, K. M., and Booth, N. A. (2007) TAFIa, PAI-1 and a2-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots, J. Thromb. Haemost., 5, 812–817. doi: 10.1111/j.1538-7836.2007.02430.x.

    Article  CAS  Google Scholar 

  17. Kurz, K. D., Main, B. W., and Sandunsky, G. E. (1990) Rat model of arterial thrombosis by ferric chloride, Thromb. Res., 15, 269–280.

    Article  Google Scholar 

  18. Maksimenko, A. V., Golubykh, V. L., and Tischenko, E. G. (2003) Catalase and chondroitin sulfate derivatives against thrombotic effect induced by reactive oxygen species in a rat artery, Metab. Eng., 5, 177–182.

    Article  CAS  Google Scholar 

  19. Bouma, B. N., and Meijers, J. C. M. (2003) Thrombin-activatable fibrinolysis inhibitor (TAFI, plasma procar-boxypeptidase B, procarboxypeptidase R, procarboxypeptidase U), J. Thromb. Haemost., 1, 1566–1574.

    Article  CAS  Google Scholar 

  20. Spiridonova, V. A., Barinova, K. V., Glinkina, K. A., Melnichuk, A. V., Gainutdynov, A. A., Safenkova, I. V., and Dzantiev, B. B. (2015) A family of DNA aptamers with varied duplex region length that forms complexes with thrombin and prothrombin, FEBS Lett., 589, 2043–2049. doi: 10.1016/j.febslet.2015.06.020.

    Article  CAS  Google Scholar 

  21. Kretz, C. A., Cuddy, K. K., Stafford, A. R., Fredenburgh, J. C., Roberts, R., and Weitz, J. I. (2010) HD1, a thrombin- and prothrombin-binding DNA aptamer, inhibits thrombin generation by attenuating prothrombin activation and thrombin feedback reactions, Thromb. Haemost., 103, 83–93; doi: 10.1160/TH09-04-0237.

    Article  CAS  Google Scholar 

  22. Kretz, C. A., Stafford, A. R., Fredenburgh, J. C., and Weitz, J. I. (2006) HD1, a thrombin-directed aptamer, binds exosite 1 on prothrombin with high affinity and inhibits its activation by prothrombinase, J. Biol. Chem., 281, 37477–37485. doi: 10.1074/jbc.M607359200.

    Article  CAS  Google Scholar 

  23. Bukys, M. A., Orban, T., Kim, P. Y., Beck, D. O., Nesheim, M. E., and Kalafatis, M. (2006) The structural integrity of anion binding exosite I of thrombin is required and sufficient for timely cleavage and activation of factor V and factor VIII, J. Biol. Chem., 281, 18569–18580. doi: 10.1074/jbc.M600752200.

    Article  CAS  Google Scholar 

  24. Petrera, N. S., Stafford, A. R., Leslie, B. A., Kretz, C. A., Fredenburgh, J. C., and Weitz, J. I. (2009) Long range communication between exosites 1 and 2 modulates thrombin function, J. Biol. Chem., 284, 25620–25629. doi: 10.1074/jbc.M109.000042.

    Article  CAS  Google Scholar 

  25. Tan, X., Dey, S. K., Telmer, C., Zhang, X., Armitage, B. A., and Bruchez, M. P. (2014) Aptamers act as activators for the thrombin mediated-hydrolysis of peptide substrates, ChemBioChem.15, 205–208. doi: 10.1002/cbic.201300693.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mazurov.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article does not contain any studies with human participants. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 12, pp. 1876–1885.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonova, V.A., Novikova, T.M., Sizov, V.A. et al. DNA Aptamers to Thrombin Exosite I. Structure-Function Relationships and Antithrombotic Effects. Biochemistry Moscow 84, 1521–1528 (2019). https://doi.org/10.1134/S0006297919120113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919120113

Keywords

Navigation