Skip to main content
Log in

The structure of G-quadruplex thrombine-binding DNA aptamer RA36

  • Published:
Moscow University Chemistry Bulletin Aims and scope

Abstract

The structure of the 31-meric aptameric DNA oligonucleotide RA36 was studied. This aptamer inhibits the coagulant activity of thrombin more effectively compared with the widely known aptamer 15TGT (thrombin-binding aptamer). RA36 aptamer has a two-pattern structure, which includes two G-rich regions capable of forming a G-quadruplex. We showed by circular dichroism that the aptamer RA36 forms an anti-parallel G-quadruplex similar to the G-quadruplex of 15TGT. The thermal stability of G-quadruplex RA36 is significantly lower than that of 15TGT under physiological conditions (concentration of the stabilizing cation 5 mM). The double-quadruplex structure of RA36 is confirmed by the CD spectra of deletion mutants; i.e., G-quadruplex can be formed both by the first and the second G-rich site of aptamer RA36.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

PAAG:

polyacrylamide gel

15TGT:

a 15-meric thrombine-binding oligonucleotide

RA36:

a 31-meric thrombine-binding oligonucleotide

XRD analysis:

X-ray diffraction analysis

NA:

nucleic acid

References

  1. Burke, J.M. and Bezzal-Herranz, A., FASEB J., 1993, vol. 7, p. 106.

    CAS  Google Scholar 

  2. Breaker, R.R. and Joyce, G.F., TIBTECH Innovations, 1994, vol. 12, p. 268.

    Article  CAS  Google Scholar 

  3. Gold, L., Polisky, B., Uhlenbeck, O., and Yarus, M., Annu. Rev. Biochem., 1995, vol. 64, p. 763.

    Article  CAS  Google Scholar 

  4. Osborne, S.E., Matsumura, I., and Ellington, A.D., Curr. Opin. Chem. Biol., 1997, vol. 1, p. 5.

    Article  CAS  Google Scholar 

  5. Kopylov, A.M. and Spiridonova, V.A., Mol. Biol. (Moscow), 2000, vol. 34, no. 6, pp. 940–954.

    Article  CAS  Google Scholar 

  6. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., and Toole, J.J., Nature, 1992, vol. 355, p. 564.

    Article  CAS  Google Scholar 

  7. Tasset, D.M., Kubik, M.F., and Steiner, W., J. Mol. Biol., 1997, vol. 272, p. 688.

    Article  CAS  Google Scholar 

  8. Macaya, R.F., Schultze, P., Smith, F.W., Roe, J. A., and Feiqon, J., Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, p. 3745.

    Article  CAS  Google Scholar 

  9. Padmanabhang, K., Padmanabhang, K.P., Ferrarag, J.D., Sadled, J.E., and Tulinsky, A., J. Biol. Chem., 1993, vol. 268, p. 17651.

    Google Scholar 

  10. Padmanabhang, K. and Tulinsky, A., Acta Crystallogr., Sect. D: Biol. Crystallogr., 1996, vol. 52, p. 272.

    Article  Google Scholar 

  11. Berova, N., Nakanishi, K., and Woody, R.W., Circular Dichroism: Principles and Applications, Weinheim, 2000, p. 724.

    Google Scholar 

  12. Kumar, N. and Maiti, S., Biochem. Biophys. Res. Commun., 2004, vol. 319, p. 759.

    Article  CAS  Google Scholar 

  13. Kankia, B.I. and Marky, L.A., J. Am. Chem. Soc., 2001, vol. 123, p. 10799.

    Article  CAS  Google Scholar 

  14. Smirnov, I.V. and Shafer, R.H., J. Mol. Biol., 2000, vol. 296, p. 1.

    Article  CAS  Google Scholar 

  15. Smirnov, I.V. and Shafer, R.H., Biochemistry, 2000, vol. 39, p. 1462.

    Article  CAS  Google Scholar 

  16. Chen, F.-M., Biochemistry, 1992, vol. 31, p. 3769.

    Article  CAS  Google Scholar 

  17. Basu, S., Szewczak, A.A., Cocco, M., and Strobel, S.A., J. Am. Chem. Soc., 2000, vol. 122, p. 3240.

    Article  CAS  Google Scholar 

  18. Peng, C.G. and Damha, M.J., Nucleic Acids Res., 2007, vol. 35, no. 15, p. 4977.

    Article  CAS  Google Scholar 

  19. Savchik, E.Y., Kalinina, T.B., Drozd, N.N., Makarov, V.A., Zav’yalova, E.G., Lapsheva, E.N., Mudrik, N.N., Babij, A.V., Pavlova, G.V., Golovin, A.V., and Kopylov, A.M., Bull. Exp. Biol. Med., 2013, vol. 156, no. 1, p. 44.

    Article  CAS  Google Scholar 

  20. Golovin, A.V., Reshetnikov, R.A., Zavyalova, E.G., Kopylov, A.M., Pavlova, G.V., and Babij, A.V., RF Patent 2429293, 2009.

  21. Zavyalova, E., Golovin, A., Pavlova, G., and Kopylov, A., Module-activity relationship of G-quadruplex based DNA aptamers for human thrombin, Curr. Med. Chem., 2013, vol. 20, no. 38, p. 4836.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Smirnova.

Additional information

Original Russian Text © A.V. Yuminova, I.G. Smirnova, A.M. Arutyunyan, A.M. Kopylov, A.V. Golovin, G.V. Pavlova, 2015, published in Vestnik Moskovskogo Universiteta. Khimiya, 2015, No. 1, pp. 51–55.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuminova, A.V., Smirnova, I.G., Arutyunyan, A.M. et al. The structure of G-quadruplex thrombine-binding DNA aptamer RA36. Moscow Univ. Chem. Bull. 70, 43–46 (2015). https://doi.org/10.3103/S0027131415010095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027131415010095

Keywords

Navigation