Advertisement

Izvestiya, Atmospheric and Oceanic Physics

, Volume 50, Issue 8, pp 782–792 | Cite as

Content of oxygen in the atmosphere over large cities and respiratory problems

  • A. S. Ginzburg
  • A. A. Vinogradova
  • E. I. Fedorova
  • E. V. Nikitich
  • A. V. Karpov
Article

Abstract

The content of oxygen in the atmospheric air over cities, as well as in living accommodations and both office and industrial premises, is the most important factor determining the health status of citizens. If both the temperature and absolute humidity of surface air are high (as happened in central European Russia in the summer of 2010), the content of atmospheric oxygen is minimum and people may experience symptoms of hypoxia. In large cities, there are additional factors that can make breathing difficult: higher air temperatures (so-called heat islands) and the presence of carbon monoxide and suspended particles in the atmosphere. This leads to an increase in the rates of morbidity and mortality in the urban population under conditions of anomalously hot weather and natural fires.

Keywords

atmosphere oxygen anomalous heat fires health status of people living in large cities mortality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atmosfera. Spravochnik (spravochnye dannye, modeli) (The Atmosphere: A Handbook (Reference Data and Models)), Leningrad: Gidrometeoizdat, 1991.Google Scholar
  2. Bizin, M.A., Popova, S.A., Chankina, O.V., Makarov, V.I., Shinkorenko, M.S., Smolyakov, B.I., and Kutsenogii, K.P., Impact of forest fires on the mass concentration, particle-size distribution, and chemical composition of atmospheric aerosol in the regional scale, Opt. Atmos. Okeana, 2013, vol. 26, no. 6, pp. 484–489.Google Scholar
  3. Directorate of Civil Registry of Moscow. http://www.zags.mos.ru/information/
  4. Directorate of Civil Registry of the Novosibirsk Region. http://www.zags.nso.ru.
  5. Department of Civil Registry of the Tomsk Region. http://www.zags.tomsk.gov.ru/.
  6. Fang, Y., Naik, V., Horowitz, L.W., and Mauzerall, D.L., Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present, Atmos. Chem. Phys., 2013, vol. 13, pp. 1377–1394.CrossRefGoogle Scholar
  7. Ginzburg, A., Vinogradova, A., and Fedorova, E., Urban residents breathing problems during heat waves and suburb fires episodes, Proc. of the 2nd Int. Conf. “Pollution and Environment-Treatment of Air (PETrA-2013)” (CD-ROM).Google Scholar
  8. Gipoksiya. Adaptatsiya, patogenez, klinika (Hypoxia. Adaptation, Pathogenesis, and Clinics), Shevchenko, Yu.L., Ed., St. Petersburg: Elbi-SPB, 2000.Google Scholar
  9. General Directorate of Civil Registry of the Moscow Region. http://www.zags.mosreg.ru/statistics/.
  10. Mosecomonitoring. http://www.mosecom.ru/air/.
  11. Nikberg, I.I., Revutskii, E.L., and Sakali, L.I., Geliometeotropnye reaktsii cheloveka (Human Heliometeotropic Reactions), Kiev: Zdorov’e, 1986.Google Scholar
  12. Oksid ugleroda. Rossiiskaya entsiklopediya po okhrane truda (Carbon Monoxide. Russian Encyclopedia on Occupational Safety), Safonov, A.L., Ed., Moscow: NTs ENAS, 2007, vol. 2.Google Scholar
  13. Otravlenie monooksidom ugleroda (ugarnym gazom) (Intoxication by Carbon Monoxide), Zobnin, Yu.V., Ed., St. Petersburg: Taktik-Studio, 2011.Google Scholar
  14. Ovcharova, V.F., Homeokinesis in weather hypoxia and hyperoxia, Proc. of the Int. Symp. WMO/WHO/UNEP in the USSR, Leningrad, September 22–26, 1986, Leningrad: Gidrometeoizdat, 1988, vol. 2.Google Scholar
  15. Revich, B.A., The 2010 hot summer and death rate of the population in the European part of Russia, in Book of Abstracts of the All-Russian Meeting “The State of Moscow Air Basin under Extreme Weather Conditions of 2010 Summer,” Moscow, 2010, pp. 91–92.Google Scholar
  16. Sitnov, S.A., Aerosol optical thickness and the total carbon monoxide content over the European Russia territory in the 2010 summer period of mass fires: Interrelation between the variation in pollutants and meteorological parameters, Izv., Atmos. Ocean. Phys., 2011, vol. 47, no. 6, pp. 714–728.CrossRefGoogle Scholar
  17. Steinbach, J., Enhancing the usability of atmospheric oxygen measurements through emission source characterization and airborne measurements, Dissertation Dr. Rer. Nat., 2010.Google Scholar
  18. Tiunov, L.A. and Kustov, V.V., Toksikologiya okisi ugleroda (The Toxicology of Carbon Monoxide), Moscow: Meditsina, 1980.Google Scholar
  19. Weather in the World. http://www.rp5.ru.
  20. Yausheva, E.P., Kozlov, V.S., Panchenko, M.V., Terpugova, S.A., Chernov, D.G., and Shmargunov, V.P., Influence of large forest fires in summer 2012 on optical and microphysical characteristics of surface aerosol, Proc. of the 19th Int. Symp. “Atmospheric and Oceanic Optics. Atmosferic Physics,” July 1–6, 2013, Altai (Barnaul-Lake Teletskoe), 2013, pp. 115–119.Google Scholar
  21. Zamolodchikov, D.G., Oxygen the basis of life, Vestn. Ross. Akad. Nauk, 2006, vol. 76, no. 3, pp. 209–218.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. S. Ginzburg
    • 1
  • A. A. Vinogradova
    • 1
  • E. I. Fedorova
    • 1
  • E. V. Nikitich
    • 2
  • A. V. Karpov
    • 1
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.State Environmental Institution “Mosekomonitoring,”MoscowRussia

Personalised recommendations