Skip to main content

Advertisement

Log in

On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Body surface Laplacian electrocardiogram (ECG) mapping using a set of disk electrodes is explored by both computer simulation and human experiments in 12 healthy subjects. The Laplacian ECG was estimated from body surface potentials using finite difference estimation algorithms. The performance of the finite difference Laplacian estimators was evaluated by both computer simulation and human experiments. The present experimental results show that the two types of finite difference Laplacian estimates are highly correlated and have a consistent spatial distribution over the anterolateral chest during normal ventricular activation. The present computer simulation and human experiment results suggest the feasibility of estimating the body surface Laplacian maps (BSLMs) from potentials using the finite difference algorithm over the anterior chest in male subjects. The noise levels of the BSLMs over the anterolateral chest were quantitatively compared to the noise levels in corresponding body surface potential maps (BSPMs) in 12 healthy subjects. The simulation and experiment results indicate that the noise to signal ratios in the BSLMs over the anterolateral chest during ventricular activation is about 5 times that of the BSPMs, when no signal processing is performed. © 1999 Biomedical Engineering Society.

PAC99: 8719Hh, 8719Nn

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abildskov, J. A., M. J. Burgess, R. L. Lux, and R. F. Wyatt. Experimental evidence for regional cardiac influence in body surface isopotential maps of dogs. Circ. Res. 38:386–391, 1976.

    Google Scholar 

  2. Arfken, G. Mathematical Methods for Physicists, 3rd ed., New York: Academic, 1985.

    Google Scholar 

  3. Babiloni, F., C. Babiloni, F. Carducci, L. Fattorini, P. Onorati, and A. Urbano. Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroencephalogr. Clin. Neurophysiol. 98:363–373, 1996.

    Google Scholar 

  4. Barnard, A. C. L., I. M. Duck, M. S. Lynn, and W. P. Timlake, The application of electromagnetic theory to electrocardiology. II Numerical solution of the integral equations. Biophys. J. 7:463–491, 1967.

    Google Scholar 

  5. De Ambroggi, L., E. Aim, C. Ceriotti, M. Rovida, and S. Negroni. Mapping of ventricular repolarization potentials in patients with arrhythmogenic right ventricular dysplasia: Principal component analysis of the ST-T waves. Circulation 96:4314–4318, 1997.

    Google Scholar 

  6. Fattorusso, V., M. Thaon, and J. Tilmant. Contribution of l'etude de l'electrocardiogramme precordial. Acta Cardiol. 4:464–487, 1949.

    Google Scholar 

  7. Flowers, N. C., L. G. Horan, and J. C. Johnson. Anterior infarctional changes occurring during mid and late ventricular activation detectable by surface mapping techniques. Circulation 54:906–913, 1976.

    Google Scholar 

  8. Geselowitz, D. B., and J. E. Ferrara. Is accurate recording of the ECG surface Laplacian feasible? IEEE Trans. Biomed. Eng. 46:377–381, 1999.

    Google Scholar 

  9. Gulrajani, R. M. Bioelectricity and Biomagnetism, New York: Wiley, 1998.

    Google Scholar 

  10. He, B. On the Laplacian inverse electrocardiography. Proc. IEEE/EMBS 145–146, 1994.

  11. He, B. Principles and applications of the Laplacian electrocardiogram. IEEE Eng. Med. Biol. Mag. 16:133–138, 1997.

    Google Scholar 

  12. He, B. and R. J. Cohen. Body surface Laplacian ECG mapping. IEEE Trans. Biomed. Eng. 39:1179–1191, 1992.

    Google Scholar 

  13. He, B., and R. J. Cohen. Inverse multiple dipole solutions from body surface Laplacian maps. Proc. IEEE/EMBS 2011–2012, 1992.

  14. He, B., and R. J. Cohen. Body surface Laplacian mapping of cardiac electrical activity. Am. J. Cardiol. 70:1617–1620, 1992.

    Google Scholar 

  15. He, B., and R. J. Cohen. Body surface Laplacian ECG mapping—A review. Crit. Rev. Biomed. Eng. 23:475–510, 1995.

    Google Scholar 

  16. He, B. Y. Chernyak, and R. J. Cohen. An equivalent body surface charge model representing three dimensional bioelectrical activity. IEEE Trans. Biomed. Eng. 42:637–646, 1995.

    Google Scholar 

  17. He, B., D. A. Kirby, T. Mullen, and R. J. Cohen. Body surface Laplacian mapping of cardiac excitation in intact pigs. PACE 16:1017–1026, 1993.

    Google Scholar 

  18. He, B., G. Parati, J. Z. Yin, and R. J. Cohen. Detecting cardiac activation sequence from body surface Laplacian maps. J. Electrocardiol. Suppl. 109–110, 1992.

  19. He, B., and D. Wu. A Bioelectric Inverse Imaging Technique Based on Surface Laplacians. IEEE Trans. Biomed. Eng. 44:529–538, 1997.

    Google Scholar 

  20. Hjorth, B. An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr. Clin. Neurophysiol. 39:526–530, 1975.

    Google Scholar 

  21. Johnston, P. R. The Laplacian inverse problem of electrocardiography: an eccentric spheres study. IEEE Trans. Biomed. Eng. 44:539–548, 1997.

    Google Scholar 

  22. Kleber, A. G., M. J. Janse, F. J. van Capelle, and D. Durrer. Mechanism and time course of S-T and T-Q segment changes during acute regional ischemia in the pig determined by extracellular and intracellular recordings. Circ. Res. 42:603–613, 1978.

    Google Scholar 

  23. Klug, D., A. Ferracci, F. Molin, M. Dubuc, P. Savard, T. Kus, F. Hlie, R. Cardinal, and R. Nadeau. Body surface potential distributions during idiopathic ventricular tachycardia. Circulation 91:2002–2009, 1995.

    Google Scholar 

  24. Law, S. K., P. L. Nunez, and R. S. Wijesinghe. Highresolution EEG using spline generated surface laplacians on spherical and ellipsoidal surfaces. IEEE Trans. Biomed. Eng. 40:145–153, 1993.

    Google Scholar 

  25. Le, J., V. Menon, and A. Gevins. Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data. Electroencephalogr. Clin. Neurophysiol. 92:433–441, 1994.

    Google Scholar 

  26. Lee, Y. Z., P. A. Belk, T. J. Mullen, S. Rivers, X. Zhang, A. Armoundas, M. Osaka, B. He, G. Aldea, and R. J. Cohen. Comparison of body surface potential and Laplacian mapping with epicardial mapping for detection of cardiac ischemia in pigs. Ann. Noninvasive Electrocardiol. 3:244–251, 1998.

    Google Scholar 

  27. Malmivuo, J., and R. Plonsey. Bioelectromagnetism, Oxford: Oxford University Press, 1995.

    Google Scholar 

  28. Miller, W. T., and D. B. Geselowitz. Simulation studies of the electrocardiogram I. The normal heart. Circ. Res. 43:301–323, 1978.

    Google Scholar 

  29. Mirvis, D. M., Ed., Body surface electrocardiograpic mapping. Amsterdam: Kluwer Academic, 1988.

    Google Scholar 

  30. O'Hara, M., X. Yu, N. Mehdi, C. Schwartz, D. Wu, B. Avitall, and B. He. Body surface Laplacian mapping of ventricular depolarization from potential recordings in humans. Proc. IEEE/EMBS 225–226, 1995.

  31. Ono, K., H. Hosaka, and B. He. A comparison of body surface Laplacian and potential maps during paced ventricular activation. Methods Inf. Med. 36:336–338, 1997.

    Google Scholar 

  32. Ono, K., J. Z. Yin, B. He, and R. J. Cohen. A 3D computer simulation study of body surface Laplacian ECG maps: Myocardial infarction. Proc. IEEE/EMBS 804–805, 1993.

  33. Oostendorp, T. F., and A. van Oosterom. The surface Laplacian of the potential: Theory and application. IEEE Trans. Biomed. Eng. 43:394–403, 1996.

    Google Scholar 

  34. Perrin, F., O. Bertrand, and J. Pernier. Scalp current density mapping: value and estimation from potential data. IEEE Trans. Biomed. Eng. 34:283–288, 1987.

    Google Scholar 

  35. Plonsey, R. Bioelectric Phenomena, New York: McGraw-Hill, 1969.

    Google Scholar 

  36. Plonsey, R., and R. C. Barr. Bioelectricity: A quantitative approach, New York: Plenum, 1988.

    Google Scholar 

  37. Taccardi, B. Distribution of heart potential on the thoracic surface of normal human subjects. Circ. Res. 12:341–352, 1963.

    Google Scholar 

  38. Tsai, H., D. Wu, H. Ceccoli, B. Avitall, K. Ono, H. Hosaka, B. He. Localization of chronic myocardial infarction using body surface Laplacian maps. Comput. Cardiol. 25:513–516, 1998.

    Google Scholar 

  39. Umetani, K., Y. Okamoto, S. Mashima, K. Ono, H. Hosaka, and B. He. Body surface Laplacian mapping in patients with left or right ventricular bundle branch block. PACE 21:2043–2054, 1998.

    Google Scholar 

  40. Wang, Y., D. Wu, and B. He. On the algorithm for computing body surface Laplacians in an inhomogeneous volume conductor of arbitrary shape. IEEE Trans. Biomed. Eng. 45:131–133, 1998.

    Google Scholar 

  41. Wei, D., and E. Harasawa. A comparison study between body surface potential and Laplacian in localizing accessory pathways with Wolff-Parkinson-White syndrome. Med. Biol. Eng. Comput. 34:Suppl. 1, Part 2, 31–32, 1996.

    Google Scholar 

  42. Wei, D., E. Harasawa, and B. He. Simulated body surface potential and Laplacian maps during the left ventricular breakthrough. Proc. IEEE/EMBS 223–224, 1995.

  43. Witkowski, F. X., K. M. Kavanagh, P. A. Penkoske, and R. Plonsey. In vivo estimation of cardiac transmembrane current. Circ. Res. 72:424–439, 1993.

    Google Scholar 

  44. Wu, D., K. Ono, H. Hosaka, and B. He. Body surface Laplacian mapping during epicardal and endocardial pacing: A model study. Comput. Cardiol. 725–728, 1996.

  45. Yin, J. Z., B. He, and R. J. Cohen. A 3D finite element cardiac model and its application to body surface Laplacian mapping. Comput. Cardiol. 247–250, 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, D., Tsai, H.C. & He, B. On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Annals of Biomedical Engineering 27, 731–745 (1999). https://doi.org/10.1114/1.224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.224

Navigation