Skip to main content

An Inverse Spectral Method to Localize Discordant Alternans Regions on the Heart from Body Surface Measurements

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7945))

Abstract

Spatially discordant T-wave alternans (TWA) has been shown to be linked to the genesis of ventricular fibrillation. Identification of discordant TWA through spatial characterization of TWA patterns in the heart has the potential to improve sudden cardiac death risk stratification. In this paper we present a method to solve a new variant of the inverse problem in electrocardiography that is tailored to estimate the TWA regions on the heart from non-invasive measurements on the body surface. We evaluate our method using both body surface potentials synthesized from heart surface potentials generated with ECGSIM and from potentials measured on a canine heart, and we show that this method detects the main regions in the heart undergoing TWA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenbaum, D., Jackson, L., Smith, J., Garan, H., Ruskin, J., Cohen, R.: Electrical alternans and vulnerability to ventricular arrythmias. New. Engl. J. Med. 330(4), 235–241 (1994)

    Article  Google Scholar 

  2. Romero, I., Grubb, N., Clegg, G., Robertson, C., Addison, P., Watson, J.: T-wave alternans found in preventricular tachyarrhythmias in CCU patients using a wavelet transform-based methodology. IEEE T. Bio-Med. Eng. 55, 2658–2665 (2008)

    Article  Google Scholar 

  3. Hunt, A.: T Wave Alternans in high arrhythmic risk patients: analysis in time and frequency domains: a pilot study. BMC Cardiov. Dis. 2, 6 (2002)

    Article  Google Scholar 

  4. Martínez, J., Olmos, S.: Methodological principles of T wave alternans analysis: a unified framework. IEEE T. Bio-Med. Eng. 52, 599–613 (2005)

    Article  Google Scholar 

  5. Karma, A.: Electrical alternans and spiral wave breakup in cardiac tissue. Chaos 4(3), 461–472 (1996)

    Article  Google Scholar 

  6. Weiss, J., Karma, A., Shiferaw, Y., Chen, P., Garfinkel, A., Qu, Z.: From pulsus to pulseless: the saga of cardiac alternans. Circ. Res. 98(10), 1244–1253 (2006)

    Article  Google Scholar 

  7. Pastore, J.M., Girouard, S.D., Laurita, K.R., Akar, F.G., Rosenbaum, D.S.: Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circ. 99, 1385–1394 (1999)

    Article  Google Scholar 

  8. Martínez, J., Olmos, S., Wagner, G., Laguna, P.: Characterization of repolarization alternans during ischemia: time-course and spatial analysis. IEEE T. Bio-Med. Eng. 53, 701–711 (2006)

    Article  Google Scholar 

  9. Janusek, D., Kania, M., Zaczek, R., Zavala-Fernandez, H., Zbieć, A., Opolski, G., Maniewski, R.: Application of Wavelet Based Denoising for T-Wave Alternans Analysis in High Resolution ECG Maps. Meas. Sci. Rev. 11, 181–184 (2011)

    Article  Google Scholar 

  10. Sassi, R., Mainardi, L.: Refined Estimate of the Dominant T-Wave. Cinc. (5), 845–848 (2010)

    Google Scholar 

  11. Sassi, R., Mainardi, L., Cerutti, S.: Amplitude of Dominant T Wave Alternans assessment on ECGs obtained from a biophysical model. In: EMBS, vol. (8), pp. 5872–5875 (September 2011)

    Google Scholar 

  12. Oostendorp, T., van Oosterom, A.: Ecgsim: an interactive tool for the study of the relation between the electric activity of the heart and the qrst waveforms at the body surface. In: IEMBS, vol. 2, pp. 3559–3562 (September 2004)

    Google Scholar 

  13. Janusek, D., Kania, M., Kepski, R., Maniewski, R.: Simulation of T-Wave Alternans and its Relation to the Duration of Ventricular Action Potentials Disturbance. Therapy, 21–27 (2010)

    Google Scholar 

  14. Adachi, K., Ohnishi, Y., Shima, T., Yamashiro, K., Takei, A., Tamura, N., Yokoyama, M.: Determinant of microvolt-level t-wave alternans in patients with dilated cardiomyopathy. J. Am. Coll. Cardiol. 34(2), 374–380 (1999)

    Article  Google Scholar 

  15. Gold, M., Bloomfield, D., Anderson, K., El-Sherif, N., Wilber, D., Groh, W., Estes, N.R., Kaufman, E., Greenberg, M., Rosenbaum, D.: A comparison of t-wave alternans, signal averaged electrocardiography and programmed ventricular stimulation for arrhythmia risk stratification. J. Am. Coll. Cardiol. 36(7), 2247–2253 (2000)

    Article  Google Scholar 

  16. Smith, J., Clancy, E.A., Valeri, C., Ruskin, J., Cohen, R.: Electrical alternans and cardiac electrical instability. Circ. 77, 110–121 (1988)

    Article  Google Scholar 

  17. Madias, J.: T-wave alternans and the confounding role of the T-wave amplitude. Journal of Electrocardiology 45, 294–295 (2012)

    Article  Google Scholar 

  18. MacLeod, R., Buist, M.: The forward problem of electrocardiography. In: Comp. Elec. Springer (2010)

    Google Scholar 

  19. Pullan, A., Cheng, L., Nash, M., Ghodrati, A., MacLeod, R., Brooks, D.: The inverse problem of electrocardiography. In: Comp. Elec. Springer (2010)

    Google Scholar 

  20. Erem, B., Brooks, D.: Differential geometric approximation of the gradient and hessian on a triangulated manifold. In: ISBI (2011)

    Google Scholar 

  21. Hansen, C.: Regularization tools: A matlab package for analysis and solution of discrete ill-posed problems. Numerical Algorithms 6(1), 1–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. SCI Institute, SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging Institute (SCI) (2013), http://www.scirun.org

  23. MacLeod, R., Stinstra, J., Lew, S., Whitaker, R., Swenson, D., Cole, M., Krueger, J., Brooks, D., Johnson, C.: Subject-specific, multiscale simulation of electrophysiology: a software pipeline for image-based models and application examples. Philos. T. R. Soc. A 367(1896), 2293–2310 (2009)

    Article  MATH  Google Scholar 

  24. Martínez-Orellana, R., Erem, B., Brooks, D.H.: Time Invariant Multielectrode Averaging For Biomedical Signals. In: ICASSP (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coll-Font, J., Erem, B., Karma, A., Brooks, D.H. (2013). An Inverse Spectral Method to Localize Discordant Alternans Regions on the Heart from Body Surface Measurements. In: Ourselin, S., Rueckert, D., Smith, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38899-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38899-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38898-9

  • Online ISBN: 978-3-642-38899-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics