Skip to main content

Advertisement

Log in

Electrical and Morphological Changes of Human Erythrocytes under High Hydrostatic Pressure Followed by Dielectric Spectroscopy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The electrical and morphological properties of human erythrocytes under high hydrostatic pressure up to 500 MPa have been studied by dielectric spectroscopy. The pressure-induced changes in the dielectric behavior of erythrocyte suspensions indicate that hydrostatic pressure causes the change in cell shape from discoidal to spherical and hemolysis at 200–300 MPa, the formation of buds and spicular processes followed by vesiculation at 300–400 MPa, and the increase in the membrane capacitance at 400–500 MPa. © 1999 Biomedical Engineering Society.

PAC99: 8716Dg, 8716Uv, 8380Lz, 8715La

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Asami, K., and T. Hanai. Observations and the phenomenological interpretation of dielectric relaxation due to electrode polarization. Bull. Inst. Chem. Res., Kyoto Univ. 71:111–119, 1993.

    Google Scholar 

  2. Asami, K., T. Hanai, and N. Koizumi. Dielectric approach to suspensions of ellipsoidal particles covered with a shell in particular reference to biological cells. Jpn. J. Appl. Phys. 19:359–365, 1980.

    Google Scholar 

  3. Asami, K., Y. Takahashi, and S. Takashima. Dielectric properties of mouse lymphocytes and erythrocytes. Biochim. Biophys. Acta 1010:49–55, 1989.

    Google Scholar 

  4. Asami, K., Y. Takahashi, and S. Takashima. Frequency domain analysis of membrane capacitance of cultured cells ~Hela and myeloma! using the micropipette technique. Biophys. J. 58:143–148, 1990.

    Google Scholar 

  5. Braganza, L. F., and D. L. Worcester. Hydrostatic pressure induces hydrocarbon chain interdigitation in singlecomponent phospholipid bilayers. Biochemistry 25:2591–2596, 1986.

    Google Scholar 

  6. Bridgeman, P. W. Water, in the liquid and five solid forms, under pressure. Proc. Am. Acad. Arts Sci. 47:439–558, 1912.

    Google Scholar 

  7. Chong, P. L. G. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes. Biochemistry 27:399–404, 1988.

    Google Scholar 

  8. Cole, K. S., and R. H. Cole. Dispersion and absorption in dielectrics. I. Alternating current characteristics. J. Chem. Phys. 9:341–351, 1941.

    Google Scholar 

  9. Dunn, L. A., and R. H. Stokes. Pressure and temperature dependence of the electrical permittivities of formamide and water. Trans. Faraday Soc. 65:2906–2912, 1969.

    Google Scholar 

  10. Eisenberg, B., and R. S. Eisenberg. Selective disruption of the sarco-tubular system in frog sartorius muscle. J. Cell Biol. 39:451–467, 1968.

    Google Scholar 

  11. Foster, K. R., and H. P. Schwan. Dielectric properties of tissues and biological materials: A critical review. Crit. Rev. Biomed. Eng. 17:25–104, 1989.

    Google Scholar 

  12. Gross, M., and R. Jaenicke. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur. J. Biochem. 22:617–630, 1994.

    Google Scholar 

  13. Hanai, T., K. Asami, and N. Koizumi. Dielectric theory of concentrated suspension of shell-spheres in particular reference to the analysis of biological cell suspensions. Bull. Inst. Chem. Res., Kyoto Univ. 57:297–305, 1979.

    Google Scholar 

  14. Heremans, K. High pressure effects on proteins and other biomolecules. Annu. Rev. Biophys. Bioeng. 11:1–21, 1982.

    Google Scholar 

  15. Kaneko, H., K. Asami, and T. Hanai. Dielectric analysis of sheep erythrocyte ghost. Examination of applicability of dielectric mixture equations. Colloid. Polym. Sci. 269:1039–1044, 1991.

    Google Scholar 

  16. Macdonald, A. The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos. Trans. R. Soc. London, Ser. B 304:47–68, 1984.

    Google Scholar 

  17. Marquis, R. E. High-pressure microbial physiology. Adv. Microb. Physiol. 14:159–241, 1976.

    Google Scholar 

  18. Pauly, H., and H. P. Schwan. Über die Impedanz einer Suspension von kugelförmigen Teilchen mit einer Schale. Z. Naturforsch. B 14:125–131, 1959.

    Google Scholar 

  19. Pethig, R., and D. B. Kell. The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys. Med. Biol. 32:933–970, 1987.

    Google Scholar 

  20. Scarlata, S. F. Compression of lipid membrane as observed at varying membrane positions. Biophys. J. 60:334–340, 1991.

    Google Scholar 

  21. Schwan, H. P. Determination of biological impedance. In: Physical Techniques in Biological Research, Vol. 6, edited by W. L. Nastuk. New York: Academic, 1963, pp. 323–406.

    Google Scholar 

  22. Shimada, S., M. Andou, N. Naito, N. Yamada, M. Osumi, and R. Hayashi. Effects of hydrostatic pressure on the ultra-structure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 40:123–131, 1993.

    Google Scholar 

  23. Srinivasan, K. R., and R. L. Kay. Pressure dependence of the dielectric constant of H2O and D2O. J. Chem. Phys. 60:3645–3649, 1974.

    Google Scholar 

  24. Takashima, S. Passive electrical properties and voltage dependent membrane capacitance of single skeletal muscle fibers. Pflugers Arch. Ges. Physiol. Menschen Tiere 403:197–204, 1985.

    Google Scholar 

  25. Takashima, S. Electrical Properties of Biopolymers and Membranes. Bristol: Adam Hilger, 1989.

    Google Scholar 

  26. Weber, G., and H. Drickamer. The effect of high pressure upon proteins and other molecules. Q. Rev. Biophys. 116:89–112, 1983.

    Google Scholar 

  27. Wong, P. T. T., D. J. Siminovitch, and H. H. Mantsch. Structure and properties of model membranes: new knowledge from high-pressure vibrational spectroscopy. Biochim. Biophys. Acta 947:139–171, 1988.

    Google Scholar 

  28. Yamaguchi, T., T. Kajikawa, and E. Kimoto. Vesiculation induced by hydrostatic pressure in human erythrocytes. J. Biochem. (Tokyo) 110:355–359, 1991.

    Google Scholar 

  29. Yamaguchi, T., H. Kawamura, E. Kimoto, and M. Tanaka. Effects of temperature and pH on hemoglobin release from hydrostatic pressure-treated erythrocytes. J. Biochem. (Tokyo) 106:1080–1085, 1989.

    Google Scholar 

  30. Zimmerman, A. H. High pressure studies in cell biology. Int. Rev. Cytol. 30:1–47, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asami, K., Yamaguchi, T. Electrical and Morphological Changes of Human Erythrocytes under High Hydrostatic Pressure Followed by Dielectric Spectroscopy. Annals of Biomedical Engineering 27, 427–435 (1999). https://doi.org/10.1114/1.190

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.190

Navigation