Skip to main content
Log in

Partitioning of Cortical and Deep Cytoskeleton Responses from Transient Magnetic Bead Twisting

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We attempted to estimate in living adherent epithelial alveolar cells, the degree of structural and mechanical heterogeneity by considering two individualized cytoskeleton components, i.e., a submembranous “cortical” cytoskeleton and a “deep” cytoskeleton (CSK). F-actin structure characterizing each CSK component was visualized from spatial reconstructions at low and high density, respectively, especially in a 10-μm-cubic neighborhood including the bead. Specific mechanical properties (Young elastic and viscous modulus E and η) were revealed after partitioning the magnetic twisting cytometry response using a double viscoelastic “solid” model with asymmetric plastic relaxation. Results show that the cortical CSK response is a faster (τ 1≤ 0.7s), softer (E1: 63-109 Pa), moderately viscous (η1: 7-18 Pa s), slightly tensed, and easily damaged structure compared to the deep CSK structure which appears slower (τ2\( \frac{1}{2} \) min), stiffer (E2: 95-204 Pa), highly viscous (η2: 760-1967 Pa s), more tensed, and fully elastic, while exhibiting a larger stress hardening behavior. Adding drug depolymerizing actin filaments decreased predominantly the deep CSK stiffness. By contrast, an agent altering cell–matrix interactions affected essentially the cortical CSK stiffness. We concluded that partitioning the CSK within cortical and deep structures is largely consistent with their respective functional activities. © 2003 Biomedical Engineering Society.

PAC2003: 8716Ka, 8716Ac, 8380Lz

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albrecht-Buehler, G. Role of cortical tension in fibroblast shape and movement. Cell Motil. Cytoskeleton7:54–67, 1987.

    Google Scholar 

  2. Bausch, A. R., U. Hellerer, M. Essler, M. Aepfelbacher, and E. Sackmann. Rapid stiffening of integrin receptor–actin linkages in endothelial cells stimulated with thrombin: A magnetic bead microrheology study. Biophys. J. 80:2649–2657, 2001.

    Google Scholar 

  3. Bausch, A. R., W. Möller, and E. Sackmann. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76:573–579, 1999.

    Google Scholar 

  4. Bausch, A. R., F. Ziemann, A. A. Boulbitch, K. Jacobson, and E. Sackmann. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75:2038–2049, 1998.

    Google Scholar 

  5. Cañadas, P., V. M. Laurent, C. Oddou, D. Isabey, and S. Wendling. A cellular tensegrity model to analyze the structural viscoelasticity of the cytoskeleton. J. Theor. Biol. 218:155–173, 2002.

    Google Scholar 

  6. Cheng, Y., C. A. Hartemink, J. H. Hartwig, and C. F. Dewey, Jr. Three-dimensional reconstruction of the actin cytoskeleton from stereo images. J. Biomech. 33:105–113, 2000.

    Google Scholar 

  7. Chicurel, M. E., C. S. Chen, and D. E. Ingber. Cellular control lies in the balance of forces. Curr. Opin. Cell Biol. 10:232–239, 1998.

    PubMed  Google Scholar 

  8. Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell88:39–48, 1997.

    Google Scholar 

  9. DePina, A. S., and G. M. Langford. Vesicle transport: the role of actin filaments and myosin motors. Microsc. Res. Tech. 47:93–106, 1999.

    Google Scholar 

  10. Dong, C., R. Skalak, K. L. Sung, G. W. Schmid-Schonbein, and S. Chien. Passive deformation analysis of human leukocytes. J. Biomech. Eng. 110:27–36, 1988.

    Google Scholar 

  11. Elson, E. L. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu. Rev. Biophys. Biophys. Chem. 17:397–430, 1988.

    Google Scholar 

  12. Evans, E., and A. Yeung. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys. J. 56:151–160, 1989.

    Google Scholar 

  13. Fabry, B., G. Maksym, R. Hubmayr, J. Butler, and J. Fredberg. Implications of heterogeneous bead behavior on cell mechanical properties measured with magnetic twisting cytometry. J. Magn. Magn. Mater. 194:120–125, 1999.

    Google Scholar 

  14. Fabry, B., G. N. Maksym, J. P. Butler, M. Glogauer, D. Navajas, and J. J. Fredberg. Scaling the microrheology of living cells. Phys. Rev. Lett. 87:148102, 2001.

    Google Scholar 

  15. Forgacs, G. On the possible role of cytoskeletal filamentous networks in intracellular signaling: An approach based on percolation. J. Cell. Sci. 108:2131–2143, 1995.

    Google Scholar 

  16. Glogauer, M., P. Arora, G. Yao, I. Sokholov, J. Ferrier, and C. A. McCulloch. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J. Cell. Sci. 110:11–21, 1997.

    Google Scholar 

  17. Goode, B. L., D. G. Drubin, and G. Barnes. Functional cooperation between the microtubule and actin cytoskeletons. Curr. Opin. Cell Biol. 12:63–71, 2000.

    Google Scholar 

  18. Hamill, O. P., and B. Martinac. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81:685–740, 2001.

    Google Scholar 

  19. Hartwig, J. H., and P. Shevlin. The architecture of actin filaments and the ultrastructural location of actin-binding protein in the periphery of lung macrophages. J. Cell Biol. 103:1007–1020, 1986.

    Google Scholar 

  20. Heidemann, S. R., S. Kaech, R. E. Buxbaum, and A. Matus. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145:109–122, 1999.

    Google Scholar 

  21. Hochmuth, R. M., P. R. Worthy, and E. A. Evans. Red cell extensional recovery and the determination of membrane viscosity. Biophys. J. 26:101–114, 1979.

    Google Scholar 

  22. Holley, M. C., and J. F. Ashmore. A cytoskeletal spring in cochlear outer hair cells. Nature (London)335:635–637, 1988.

    Google Scholar 

  23. Ingber, D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell. Sci. 104:613–627, 1993.

    Google Scholar 

  24. Ingber, D. E. Opposing views on tensegrity as a structural framework for understanding cell mechanics. J. Appl. Physiol. 89:1663–1670, 2000.

    Google Scholar 

  25. Ingber, D. E., L. Dike, L. Hansen, S. Karp, H. Liley, A. Maniotis, H. McNamee, D. Mooney, G. Plopper, and J. Sims. Cellular tensegrity: Exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. Int. Rev. Cytol. 150:173–224, 1994.

    Google Scholar 

  26. Ingber, D. E., D. Prusty, Z. Sun, H. Betensky, and N. Wang. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomech. 28:1471–1484, 1995.

    Google Scholar 

  27. Janmey, P. A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78:763–781, 1998.

    Google Scholar 

  28. Katoh, K., Y. Kano, M. Masuda, H. Onishi, and K. Fujiwara. Isolation and contraction of the stress fiber. Mol. Biol. Cell9:1919–1938, 1998.

    Google Scholar 

  29. Katoh, K., M. Masuda, Y. Kano, Y. Jinguji, and K. Fujiwara. Focal adhesion proteins associated with apical stress fibers of human fibroblasts. Cell Motil. Cytoskeleton31:177–195, 1995.

    Google Scholar 

  30. Kaverina, I., O. Krylyshkina, and J. V. Small. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146:1033–1044, 1999.

    Google Scholar 

  31. Knauper, V., C. Lopez-Otin, B. Smith, G. Knight, and G. Murphy. Biochemical characterization of human collagenase-3. J. Biol. Chem. 271:1544–1550, 1996.

    Google Scholar 

  32. Koffer, A., P. E. Tatham, and B. D. Gomperts. Changes in the state of actin during the exocytotic reaction of permeabilized rat mast cells. J. Cell Biol. 111:919–927, 1990.

    Google Scholar 

  33. Laurent, V. M., S. Henon, E. Planus, R. Fodil, M. Balland, D. Isabey, and F. Gallet. Assessment of mechanical properties of adherent living cells by bead micromanipulation: Comparison of magnetic twisting cytometry versus optical tweezers. J. Biomech. Eng. 124:408–421, 2002.

    Google Scholar 

  34. Luby-Phelps, K. Physical properties of cytoplasm. Curr. Opin. Cell Biol. 6:3–9, 1994.

    Google Scholar 

  35. Maksym, G. N., B. Fabry, J. P. Butler, D. Navajas, D. J. Tschumperlin, J. D. Laporte, and J. J. Fredberg. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. J. Appl. Physiol. 89:1619–1632, 2000.

    Google Scholar 

  36. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A. 94:849–854, 1997.

    Google Scholar 

  37. Mathur, A. B., G. A. Truskey, and W. M. Reichert. Atomic force and total reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys. J. 78:1725–1735, 2000.

    Google Scholar 

  38. Mijailovich, S. M., M. Kojic, M. Zivkovic, B. Fabry, and J. J. Fredberg. A finite element model of cell deformation during magnetic bead twisting. J. Appl. Physiol. 93:1429–1436, 2002.

    Google Scholar 

  39. Muallem, S., K. Kwiatkowska, X. Xu, and H. L. Yin. Actin filament disassembly is a sufficient final trigger for exocytosis in nonexcitable cells. J. Cell Biol. 128:589–598, 1995.

    Google Scholar 

  40. Murphy, G., J. A. Allan, F. Willenbrock, M. I. Cockett, J. P. O'Connell, and A. J. Docherty. The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem. 267:9612–9618, 1992.

    Google Scholar 

  41. Planus, E., S. Galiacy, M. Matthay, V. Laurent, J. Gavrilovic, G. Murphy, C. Clérici, D. Isabey, C. Lafuma, and M. P. d'Ortho. Role of collagenase in mediating alveolar epithelial wound repair. J. Cell. Sci. 112(2):243–252, 1999.

    Google Scholar 

  42. Potard, U. S., J. P. Butler, and N. Wang. Cytoskeletal mechanics in confluent epithelial cells probed through integrins and E-cadherins. Am. J. Physiol. 272:C1654–C1663, 1997.

    Google Scholar 

  43. Pourati, J., A. Maniotis, D. Spiegel, J. L. Schaffer, J. P. Butler, J. J. Fredberg, D. E. Ingber, D. Stamenovic, and N. Wang. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells?Am. J. Physiol. 274:C1283–C1289, 1998.

    Google Scholar 

  44. Qualmann, B., M. M. Kessels, and R. B. Kelly. Molecular links between endocytosis and the actin cytoskeleton. J. Cell Biol. 150:F111–F116, 2000.

    Google Scholar 

  45. Raucher, D., T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer. Phosphatidylinositol 4,5–bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell100:221–228, 2000.

    Google Scholar 

  46. Satcher, R. L. J., and C. F. J. Dewey. Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton (see comments). Biophys. J. 71:109–118, 1996.

    Google Scholar 

  47. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. M. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.

    Google Scholar 

  48. Small, J. V. The actin cytoskeleton. Electron Microsc. Rev. 1:155–174, 1988.

    Google Scholar 

  49. Small, J. V., K. Rottner, I. Kaverina, and K. I. Anderson. Assembling an actin cytoskeleton for cell attachment and movement. Biochim. Biophys. Acta1404:271–281, 1998.

    Google Scholar 

  50. Stamenovic, D., D. E. Ingber, N. Wang, and J. J. Fredberg. A microstructural approach to cytoskeletal mechanics based on tensegrity. J. Theor. Biol. 181:125–136, 1996.

    Google Scholar 

  51. Sung, K. L., C. Dong, G. W. Schmid-Schonbein, S. Chien, and R. Skalak. Leukocyte relaxation properties. Biophys. J. 54:331–336, 1988.

    Google Scholar 

  52. Wang, N. Mechanical interactions among cytoskeletal filaments. Hypertension32:162–165, 1998.

    Google Scholar 

  53. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science260:1124–1127, 1993.

    PubMed  Google Scholar 

  54. Wang, N., and D. E. Ingber. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys. J. 66:2181–2189, 1994.

    Google Scholar 

  55. Wendling, S., C. Oddou, and D. Isabey. Stiffening response of a cellular tensegrity model. J. Theor. Biol. 196:309–325, 1999.

    Google Scholar 

  56. Wendling, S., E. Planus, V. Laurent, L. Barbe, A. Mary, C. Oddou, and D. Isabey. Role of cellular tone and microenvironment on cytoskeleton stiffness predicted by tensegrity model. Eur. Phys. J.: Appl. Phys. 9:51–62, 2000.

    Google Scholar 

  57. Wu, Z., K. Wong, M. Glogauer, R. P. Ellen, and C. A. McCulloch. Regulation of stretch-activated intracellular calcium transients by actin filaments. Biochem. Biophys. Res. Commun. 261:419–425, 1999.

    Google Scholar 

  58. Yamada, S., D. Wirtz, and S. C. Kuo. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78:1736–1747, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurent, V.M., Fodil, R., Cañadas, P. et al. Partitioning of Cortical and Deep Cytoskeleton Responses from Transient Magnetic Bead Twisting. Annals of Biomedical Engineering 31, 1263–1278 (2003). https://doi.org/10.1114/1.1616932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1616932

Navigation