Skip to main content

Advertisement

Log in

Intracellular Calcium Changes in Rat Aortic Smooth Muscle Cells in Response to Fluid Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vascular smooth muscle cells (VSM) are normally exposed to transmural fluid flow shear stresses, and after vascular injury, blood flow shear stresses are imposed upon them. Since Ca2+ is a ubiquitous intracellular signaling molecule, we examined the effects of fluid flow on intracellular Ca2+ concentration in rat aortic smooth muscle cells to assess VSM responsiveness to shear stress. Cells loaded with fura 2 were exposed to steady flow shear stress levels of 0.5–10.0 dyn/cm2 in a parallel-plate flow chamber. The percentage of cells displaying a rise in cytosolic Ca2+ ion concentration ([Ca2+]i) increased in response to increasing flow, but there was no effect of flow on the ([Ca2+]i) amplitude of responding cells. Addition of Gd3+ (10 μM) or thapsigargin (50 nM) significantly reduced the percentage of cells responding and the response amplitude, suggesting that influx of Ca2+ through ion channels and release from intracellular stores contribute to the rise in ([Ca2+]i) in response to flow. The addition of nifedipine (1 or 10 μM) or ryanodine (10 μM) also significantly reduced the response amplitude, further defining the role of ion channels and intracellular stores in the Ca2+ response. © 2002 Biomedical Engineering Society.

PAC2002: 8716Uv, 8719Uv, 8716Dg, 8719Ff

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alshihabi, S. N., Y. S. Chang, J. A. Frangos, and J. M. Tarbel. Shear stress–induced release of PGE2 and PGI2 by vascular smooth muscle. Biochem. Biophys. Res. Commun. 224:808–824, 1996.

    Google Scholar 

  2. Bean, B. P. Classes of calcium channels in vertebrate cells. Annu. Rev. Physiol. 51:367–384, 1989.

    Google Scholar 

  3. Biagi, B. A., and J. J. Enyeart. Gadolinium blocks low–and high–threshold calcium currents in pituitary cells. Am. J. Physiol. 259:C515–C520, 1990.

    Google Scholar 

  4. Buck, R. C. Behavior of vascular smooth muscle cells during repeated stretching of the substratum in vivo. Atherosclerosis 46:217–223, 1983.

    Google Scholar 

  5. Clowes, A. W., T. R. Kirkman, and M. M. Clowes. Mechanisms of arterial graft failure 4. Chronic endothelial and smooth muscle cell proliferation in healing polytetrafluoroethylene protheses. J. Vasc. Surg. 3:877–884, 1986.

    Google Scholar 

  6. Davies, P.. Flow–mediated endothelial mechanotranduction. Phys. Rev. 75:519–560, 1995.

    Google Scholar 

  7. Davis, M. J., and L. M. Burch. Single stretch–activated ion channels in vascular smooth muscle cells. FASEB J. 3:A254, 1989.

    Google Scholar 

  8. Davis, M. J., G. A. Meininger, and D. C. Zawieja. Stretch–induced increases in intracellular calcium of isolated vascular smooth muscle cells. Am. J. Physiol. 263:H1292–H1299, 1992.

    Google Scholar 

  9. Downing, S. D., and D. F. Socie. Simple rainflow counting algorithms. Int. J. Fatigue 4:31–40, 1982.

    Google Scholar 

  10. Dull, R., and P. F. Davies. Flow modulation of agonist (ATP)–response [Ca2+] coupling in vascular endothelium. Am. J. Physiol. 261:H149–H154, 1991.

    Google Scholar 

  11. Dull, R., J. M. Tarbell, and P. Davies. Mechanisms of flow–mediated signal transduction in endothelial cells: Kinetics of ATP surface concentrations. J. Vasc. Res. 29:410–419, 1992.

    Google Scholar 

  12. Frangos, J. A., L. V. McIntire, and S. G. Eskin. Shear stress–induced stimulation of mammalian cell metabolism. Biotechnol. Bioeng. 32:1053–1060, 1988.

    Google Scholar 

  13. Ganitkevich, V. Y., and G. Isenberg. Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea pig coronary artery. J. Physiol. (London) 426:19–42, 1990.

    Google Scholar 

  14. Geary, R. L., T. R. Kohler, S. Vergel, T. R. Kirkman, and A. W. Clowes. Time course of flow–induced smooth muscle cell proliferation and intimal thickening in endothelialized baboon vascular grafts. Circ. Res. 74:14–23, 1993.

    Google Scholar 

  15. Geiger, R. V., B. C. Berk, R. W. Alexander, and R. M. Nerem. Flow–induced calcium transients in single endothelial cells: Spatial and temporal analysis. Am. J. Physiol. 262:C1411–C1417, 1992.

    Google Scholar 

  16. Grynkiewicz, G., M. Poenie, and R. Tsien. A new generation of Ca2+ indicators with greatly improved fluorescene properties. J. Biol. Chem. 260:3440–3450, 1985.

    Google Scholar 

  17. Helminger, G. B., C. Berk, and R. M. Nerem. Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ. Am. J. Physiol. 269:C367–C375, 1995.

    Google Scholar 

  18. Hisayama, T., I. Takayanagi, and Y. Okamoto. Ryanodine reveals multiple contractile and relaxant mechanisms in vascular smooth muscle: Simultaneous measurements of mechanical activity and cytoplasmic free Ca2+ level with fura–2. Br. J. Pharmacol. 100:677–684, 1990.

    Google Scholar 

  19. Hung, C. T., F. D. Allen, S. R. Pollack, and C. T. Brighton. Intracellular Ca2+ stores and extracellular Ca2+ stores are required in the real–time Ca2+ response of bone cells experiencing fluid flow. J. Biomech. 29:1411–1417, 1996.

    Google Scholar 

  20. Hung, C. T., S. R. Pollack, M. Reilly, and C. T. Brighton. Real–time calcium response of cultured bone cells to fluid flow. Clin. Orthop. Relat. Res. 313:256–269, 1995.

    Google Scholar 

  21. Iino, M., T. Kobayaski, and M. Endo. Use of ryanodine for functional removal of the calcium store in smooth muscle cells of the guinea pig. Biochem. Biophys. Res. Commun. 254:417–422, 1988.

    Google Scholar 

  22. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 11:969–976, 1998.

    Google Scholar 

  23. Kirber, M. T., L. H. Clapp, A. M. Gurney, J. V. Walsh, Jr., and J. J. Singer. Stretch–activated ion channels in mammalian vascular smooth muscle cells. J. Gen. Physiol. 94:37a–38a, 1989.

    Google Scholar 

  24. Kirber, M. T., J. V. Walsh, Jr., and J. J. Singer. Stretch–activated ion channels in smooth muscle: A mechanism for the initiation of stretch–induced contraction. Pfluegers Arch. 412:339–345, 1988.

    Google Scholar 

  25. Kulik, T. J., R. A. Bialecki, W. S. Colucci, A. Rothman, E. T. Glennon, and R. H. Underwood. Stretch increases inositol triphosphate and inositol tetrakiphosphate in cultured pulmonary vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 180:982–987, 1991.

    Google Scholar 

  26. Lacampagne, A., F. Gannier, J. Argibay, D. Garnier, and J. Y. Guennec. The stretch–activated ion channel blocker gadolinium also blocks L–type calcium channels in isolated ventricular myocytes of the guinea pig. Biochim. Biophys. Acta 1191:205–208, 1994.

    Google Scholar 

  27. Laine, M., O. Arjamaa, O. Vuolteenaho, H. Ruskoaho, and M. Weckstrom. Block of stretch–activated atrial natriuretic peptide secretion by gadolinium in isolated rat atrium. J. Physiol. (Paris) 480:353–361, 1994.

    Google Scholar 

  28. Li, C., and Q. Xu. Mechanical stress–initiated signal transduction in vascular smooth muscle cells. Cell. Signal. 12:435–445, 2000.

    Google Scholar 

  29. Leung, D. Y., S. Glagov, and M. B. Mathews. Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science 191:475–477, 1976.

    Google Scholar 

  30. Lever, M. J., J. M. Tarbell, and C. G. Caro. The effect of luminal flow in rabbit carotid artery on transmural fluid transport. Exp. Physiol. 77:553–563, 1992.

    Google Scholar 

  31. Mishra, S., and K. Hermsmeyer. Selective inhibition of T–type Ca2+ channels by RO 40–5967. Circ. Res. 75:144–148, 1994.

    Google Scholar 

  32. Papadaki, M., M. G. Tilton, S. J. Eskin, and L. V. McIntire. Nitric oxide production by cultured human aortic smooth muscle cells: Stimulation by fluid flow. Am. J. Physiol. 274:H616–H626, 1998.

    Google Scholar 

  33. Potocnik, S. J., T. V. Murphy, N. Kotecha, and M. Hill. Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca2+. Br. J. Pharmacol. 131:1065–1072, 2000.

    Google Scholar 

  34. Setoguchi, M., Y. Ohya, I. Abe, and M. Fujishima. Stretch–activated whole–cell currents in smooth muscle cells from mesenteric resistance artery of guinea pig. J. Physiol. (Paris) 501:343–353, 1997.

    Google Scholar 

  35. Sill, H. W., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 268:H535–H543, 1995.

    Google Scholar 

  36. Sterpetti, A., A. Cucina, L. S. D'Angelo, B. Cardillo, and A. Cavallaro. Response of arterial smooth muscle cells to laminar flow. J. Cardiovasc. Surg. 33:619–624, 1992.

    Google Scholar 

  37. Tada, S., and J. M. Tarbell. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am. J. Physiol. 278:H1489–H1497, 2000.

    Google Scholar 

  38. Wagner, C. T., W. Durante, N. Christodoulides, J. D. Hellums, and A. I. Schafer. Hemodynamic forces induce the expression of heme oxygenase in cultured vascular smooth muscle cells. J. Clin. Invest. 100:589–596, 1997.

    Google Scholar 

  39. Wang, D. M., and J. M. Tarbell. Modeling interstitial flow in an artery wall allow estimation of wall shear stress on smooth muscle cells. J. Biomech. Eng. 117:358–363, 1995.

    Google Scholar 

  40. Wang, S., and J. M. Tarbell. Effects of fluid flow on smooth muscle cells in a three–dimensional collagen gel model. Arterioscler., Thromb., Vasc. Biol. 20:2220–2225, 2000.

    Google Scholar 

  41. Wilkinson, N. C., F. Gao, and O. P. Hamill. Effects of mechanogated cation channel blockers on xenopus oocyte growth and development. J. Membr. Biol. 165:161–174, 1998.

    Google Scholar 

  42. Wingertzahn, M. A., and S. O. Raymond. Changes in ryanodine receptor–mediated calcium release during skeletal muscle differentiation. Exp. Biol. Med. 226:119–126, 2001.

    Google Scholar 

  43. Xuan, Y. T., O. L. Wang, and A. R. Whorton. Thapsigargin stimulates Ca2+ entry in vascular smooth muscle cells: Nicardipine–sensitive and–insensitive pathways. Am. J. Physiol. 262:C1258–C1265, 1992.

    Google Scholar 

  44. Yellowley, C. E., C. R. Jacobs, Z. Li, Z. Zhou, and H. J. Donahue. Effects of fluid flow on intracellular calcium in bovine articular chondrocytes. Am. J. Physiol. 273:C30–C36, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R., Yellowley, C.E., Civelek, M. et al. Intracellular Calcium Changes in Rat Aortic Smooth Muscle Cells in Response to Fluid Flow. Annals of Biomedical Engineering 30, 371–378 (2002). https://doi.org/10.1114/1.1470179

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1470179

Navigation