Skip to main content

Advertisement

Log in

Effect of Fluid Shear Stress on the Permeability of the Arterial Endothelium

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The localization of atherosclerotic lesions is due, in part, to regional variations in the permeability of arterial endothelium to macromolecules. In turn, endothelial permeability may be influenced by fluid shear stresses. The spatial variation in endothelial permeability is reviewed and evidence for shear stress dependence upon permeability is presented. These results are examined in light of various signaling mechanisms that increase permeability by increasing the transport of water and macromolecules through the junctions separating endothelial cells. Signaling pathways cause a change in the dense peripheral band of actin and actin stress fibers or alter the phosphorylation of junction proteins which affects their ability to localize in junctions. Future directions to clarify the effect of shear stress on permeability are considered. © 2002 Biomedical Engineering Society.

PAC2002: 8716Dg, 8714Ee, 8719Tt, 8716Uv

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Adamson, R. H. Permeability of frog mesenteric capillaries after partial pronase digestion of the endothelial glycocalyx. J. Physiol. (London) 428:1–13, 1990.

    Google Scholar 

  2. Adamson, R. H., B. Liu, G. N. Fry, L. L. Rubin, and F. E. Curry. Microvascular permeability and number of tight junctions are modulated by camp. Am. J. Physiol. 274:H1885–H1894, 1998.

    Google Scholar 

  3. Adamson, R. H. and C. C. Michel. Pathways through the intercellular clefts of frog mesenteric capillaries. J. Physiol. (London) 466:303–327, 1993.

    Google Scholar 

  4. Alexander, J. S. Rho. tyrosine kinase, Ca21, and junctions in endothelial hyperpermeability. Circ. Res. 87:268–271, 2000.

    Google Scholar 

  5. Anderson, R. G. W., M. S. Brown, and J. L. Goldstein. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10:351–364, 1977.

    Google Scholar 

  6. Andriopoulou, P., P. Navarro, A. Zanetti, M. G. Lampugnani, and E. Dejana. Histamine induces tyrosine phosphorylation of endothelial cell-to-cell adherens junctions. Arterioscler., Thromb. Vasc. Biol. 19:2286–2297, 1999.

    Google Scholar 

  7. Angst, B. D., C. Marcozzi, and A. I. Magee. The cadherin superfamily: diversity in form and function. J. Cell. Sci. 114:629–641, 2001.

    Google Scholar 

  8. Balaban, N. Q., U. S. Schwartz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. Force and focal adhesion assembly: a close relationship studied using elastic micropatterened substrates. Nature Cell Biol. 3:466–473, 2001.

    Google Scholar 

  9. Baldwin, A. L. and G. Thurston. Changes in endothelial actin cytoskeleton in venules with time after histamine treatment. Am. J. Physiol. 38:H1528–H1537, 1995.

    Google Scholar 

  10. Baldwin, A. L. and G. Thurston. Mechanics of endothelial cell architecture and vascular permeability. Crit. Rev. Biomed. Eng. 29:247–278, 2001.

    Google Scholar 

  11. Baldwin, A. L., G. Thurston, and H. Al Naemi. Inhibition of nitric oxide synthesis increases venular permeability and alters endothelial actin cytoskeleton. Am. J. Physiol. 274:H1776–1784, 1998.

    Google Scholar 

  12. Baldwin, A. L. and L. M. Wilson. Endothelium increases medial hydraulic conductance of aorta, possibly by release of EDRF. Am. J. Physiol. 264:H26–H32, 1993.

    Google Scholar 

  13. Barakat, A. I., P. A. F. Uhthoff, and C. K. Colton. Topographical mapping of sites of enhanced HRP permeability in the normal rabbit aorta. ASME J. Biomech. Eng. 114:283–292, 1992.

    Google Scholar 

  14. Baumgartner, W., P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, and D. Drenckhahn. Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. U.S.A. 97:4005–4010, 2000.

    Google Scholar 

  15. Bazzoni, G., O. M. Martinez-Estrada, F. Orsenigo, M. Cordenonsi, S. Citi, and E. Dejana. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occluding. J. Biol. Chem. 275:20520–20526, 2000.

    Google Scholar 

  16. Bell, R., A. Gallus, and C. J. Schwartz. Aortic endothelial permeability to albumin; focal and regional patterns of uptake and transmural distribution of 131I-albumin in the young pig. J. Experiment Mol. Pathol. 20:57–68, 1974.

    Google Scholar 

  17. Beningo, K. A., M. Dembo, I. Kaverina, J. V. Small, and Y. Wang. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153:881–887, 2001.

    Google Scholar 

  18. Berceli, S. A., V. S. Warty, R. A. Sheppeck, W. A. Mandarino, S. K. Tanksale, and H. S. Borovetz. Hemodynamics and low density lipoprotein metabolism. Arteriosclerosis(Dallas) 10:688–594, 1990.

    Google Scholar 

  19. Berk, B. C., M. A. Corson, T. E. Peterson, and H. Tseng. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: A hypothesis for calcium-dependent and calcium-independent events activated by flow. J. Biomech. 28:1439–1450, 1995.

    Google Scholar 

  20. Beyer, E. C., D. L. Paul, and D. A. Goodenough. Connexin family of gap junction proteins. J. Membr. Biol. 116:187–194, 1990.

    Google Scholar 

  21. Braga, V. M., A. D. Maschio, L. Machesky, and E. Dejana. Regulation of cadherin function by rho and rac: Modulation by junction maturation and cellular context. Mol. Biol. Cell 10:9–22, 1999.

    Google Scholar 

  22. Bratzler, R. L., G. M. Chisolm, C. K. Colton, K. A. Smith, D. B. Zilversmit, and R. S. Lees. The distribution of labeled albumin across the rabbit thoracic aorta in vivo. Circ. Res. 40:182–190, 1977.

    Google Scholar 

  23. Buchanan, J. R., C. Kleinstreuer, G. A. Truskey, and M. Lei. Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aortoceliac junction. Atherosclerosis 143:27–40, 1999.

    Google Scholar 

  24. Burt, J. M., A. M. Fletcher, T. D. Steele, Y. Wu, G. T. Cottrell, and D. T. Kurjiaka. Alteration of Cx43:Cx40 expression ratio in A7r5 cells. Am. J. Physiol. 280:C500–C508, 2001.

    Google Scholar 

  25. Carew, T. E. Mechano-chemical response of canine aortic endothelium to elevated shear stress in vitro. PhD, Catholic University of America, 1971.

  26. Caro, C. G. Transport of 14C-4-cholesterol between eprfusing serum and dog common carotid artery: A shear dependent process. Cardiovasc. Res. 8:194–203, 1974.

    Google Scholar 

  27. Chang, Y. S., J. A. Yaccino, S. Lakshminarayanan, J. A. Frangos, and J. M. Tarbell. Shear-induced increase in hydraulic conductivity in endothelial cells is mediated by a nitric oxide-dependent mechanism. Arterioscler., Thromb. Vasc. Biol. 20:35–42, 2000.

    Google Scholar 

  28. Chen, Y.-L., K.-M. Jan, H.-S. Lin, and S. Chien. Ultrastructural studies on macromolecular permeability in relation to endothelial cell turnover. Atherosclerosis 118:89–104, 1995.

    Google Scholar 

  29. Chien, S., L. S. Laufer, and D. A. Handley. Vesicle distribution in the arterial endothelium determined with ruthenium red as an extracellular marker. J. Ultrastruct. Res. 79:198–206, 1982.

    Google Scholar 

  30. Chien, S., S. Li, and J. Y. J. Shyy. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162–169, 1998.

    Google Scholar 

  31. Colangelo, S., B. L. Langille, G. Steiner, and A. I. Gotlieb. Alterations in endothelial F-actin microfilaments in rabbit aorta in hypercholesterolemia. Arterioscler., Thromb. Vasc. Biol. 18:52–56, 1998.

    Google Scholar 

  32. Constantinescu, A. A., H. Vink, and J. A. E. Spaan, Elevated capillary hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am. J. Physiol. 280:H1051–H1057, 2000.

    Google Scholar 

  33. Corado, M. et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl. Acad. Sci. et al. U.S.A. 96:9815–9820, 1999.

    Google Scholar 

  34. Curry, F. E. Mechanics and thermodynamics of transcapillary exchange. in Handbook of Physiology, Section 2. Microcirculation, edited by E. M. Renkin and C. C. Michel. Bethesda: American Physiological Society, 1984, pp. 309–374.

    Google Scholar 

  35. Curry, F. E., W. L. Joyner, and J. C. Rutledge. Graded modulation of frog microvessel permeability to albumin using ionophore-A23187. Am. J. Physiol. 258:H587–H598, 1990.

    Google Scholar 

  36. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Google Scholar 

  37. Davies, P. F., C. F. Dewey, S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone. Influence of hemodynamic forces on vascular endothelial function—In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Invest. 73:1121–1129, 1984.

    Google Scholar 

  38. Davies, P. F., and L. Kuczera. Endocytic vesicles and surface invaginations in cultured vascular endothelium: A morphometric comparison. J. Ultrastruc. Res. 79: 1981.

  39. Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion: Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.

    Google Scholar 

  40. Demaio, L., Y. S. Chang, T. W. Gardner, J. M. Tarbell, and D. A. Antonetti. Shear stress regulates occludin content and phosphorylation. Am. J. Physiol. 281:H105–H113, 2001.

    Google Scholar 

  41. DePaola, N., P. F. Davies, W. F. J. Pritchard, L. Florez, N. Harbeck, and D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. U.S.A. 96:3154–3159, 1999.

    Google Scholar 

  42. DePaola, N., M. A. Gimbrone, P. F. Davies, and C. F. Dewey. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    Google Scholar 

  43. Desjardins, C. and B. R. Duling. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H647–H654, 1990.

    Google Scholar 

  44. Dewey, C. F., S. R. Bussolari, M. A. Gimbrone, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–185, 1981.

    Google Scholar 

  45. Dimmeler, S., I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, and A. M. Zeiher. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature (London) 399:601–605, 1999.

    Google Scholar 

  46. Draijer, R., D. E. Atsma, A. van der Laarse, and V. W. M. van Hinsbergh. cGMP and nitric oxide modulate thrombininduced endothelial permeability: Regulation via different pathways in human aortic and umbilical vein endothelial cells. Circ. Res. 76:199–208, 1995.

    Google Scholar 

  47. Essler, M., M. Retzer, M. Bauer, J. W. Heemskerki, M. Aepfelbacher, and W. Siess. Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of rho/rho kinase and inhibition of myosin light chain phosphatase. J. Biol. Chem. 274:30361–30364, 1999.

    Google Scholar 

  48. Forster, B. A. and P. D. Weinberg. Changes with age in the influence of endogenous nitric oxide on transport properties of the rabbit aortic wall near branches. Arterioscler., Thromb. Vasc. Biol. 17:1361–1368, 1997.

    Google Scholar 

  49. Fraser, P., L. Smaje, and A. Verrinder. Microvascular pressures and filtration coefficients in the cat mesentery. J. Physiol. (London) 283:439–456, 1978.

    Google Scholar 

  50. Friedman, M. H., O. J. Deters, C. B. Bargeron, G. M. Hutchins, and F. F. Mark. Shear-dependent thickening of the human arterial intima. Atherosclerosis 60:161–171, 1986.

    Google Scholar 

  51. Friedman, M. H. and D. L. Fry. Arterial permeability dynamics and vascular disease. Atherosclerosis 104:189–194, 1993.

    Google Scholar 

  52. Friedman, M. H., J. M. Henderson, J. A. Aukerman, and P. A. Clingan. Effect of periodic alterations in shear on macromolecular uptake. Biorheology 37:265–277, 2000.

    Google Scholar 

  53. Fu, B. M., F. E. Curry, and S. Weinbaum. A diffusion wake model for tracer ultrastructure-permeability studies in microvessels. Am. J. Physiol. 269:H2124–H2140, 1995.

    Google Scholar 

  54. Furuse, M., M. Itoh, T. Hirase, A. Nagafuchi, S. Yonemura, and S. Tsukita. Direct association of occludin With ZO-1 and its possible involvement in the localization of occluding at tight junctions. J. Cell Biol. 127:1617–1626, 1994.

    Google Scholar 

  55. He, P., M. Zeng, and F. E. Curry. Dominant role of camp in regulation of microvessel permeability. Am. J. Physiol. 278:H1124–H1133, 2000.

    Google Scholar 

  56. Helmke, B. P., D. B. Thakker, R. D. Goldman, and P. F. Davies. Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys. J. 80:184–194, 2000.

    Google Scholar 

  57. Henry, C. B. S. and B. R. Duling. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277:H508–H514, 1999.

    Google Scholar 

  58. Henry, C. B. S. and B. R. Duling. TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am. J. Physiol. 279:H2815–H2823, 2000.

    Google Scholar 

  59. Herrmann, R. A., R. A. Malinauskas, and G. A. Truskey. Characterization of sites of elevated low density lipoprotein at the intercostal, celiac, and iliac branches of the rabbit aorta. Arterioscler. Thromb. 14:313–323, 1994.

    Google Scholar 

  60. Hillsley, M. V., and J. M. Tarbell. Pulsatile shear effects on endothelial hydraulic conductivity: The role of nitric oxide, camp and cgmp. in 2001 Bioengineering Conference. 443 Endothelial Permeability 2001. Snowbird, UT: American Society of Mechanical Engineers.

    Google Scholar 

  61. Hirase, T., J. M. Staddon, M. Saitou, Y. Ando-Akatsuka, M. Itoh, M. Furuse, K. Fujimoto, S. Tsukita, and L. L. Rubin. Occludin as a possible determinant of tight junction permeability in endothelial cells. J. Cell. Sci. 110:1603–1613, 1997.

    Google Scholar 

  62. Igarashi, Y., H. Utsumi, H. Chiba, Y. Yamada-Sasamori, H. Tobioka, Y. Kamimura, K. Furuuchi, Y. Kokai, T. Nakagawa, M. Mori, and N. Sawada. Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem. Biophys. Res. Commun. 261:108–112, 1999.

    Google Scholar 

  63. Jo, H., R. O. Dull, T. M. Hollis, and J. M. Tarbell. Endothelial albumin permeability is shear dependent, time-dependent, and reversible. Am. J. Physiol. 260:H1992–H1996, 1991.

    Google Scholar 

  64. Kao, C. H., J. K. Chen, J. S. Kuo, and V. C. Yang. Visualization of the transport pathways of low density lipoproteins across the endothelial cells in the branched regions of arteries. Atherosclerosis 116:27–41, 1995.

    Google Scholar 

  65. Kevil, C. G., N. Ohno, D. C. Gute, N. Okayama, S. A. Robinson, E. Chaney, and J. S. Alexander. Role of cadherin internalization in hydrogen peroxide-mediated endothelial permeability. Free Rad. Biol. Med. 24:1015–1022, 1998.

    Google Scholar 

  66. Kevil, C. G., T. Oshima, B. Alexander, L. L. Coe, and J. S. Alexander. H2O2-mediated permeability: Role of MAPK and occluding. Am. J. Physiol. 279:C21–C30, 2000.

    Google Scholar 

  67. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation-positive correlation between plaque location and low and oscillating shear stress. Artherosclerosis 5:293–302, 1985.

    Google Scholar 

  68. Kubes, P. and D. N. Granger. Nitric oxide modulates microvascular permeability. Am. J. Physiol. 262:H611–H615, 1992.

    Google Scholar 

  69. Lakshminarayanan, S., T. W. Garnder, and J. M. Tarbell. Effect of shear stress on the hydraulic conductivity of cultured bovine retinal microvascular endothelial cell monolayers. Curr. Eye Res. 21:944–951, 2000.

    Google Scholar 

  70. Lampugnani, M. G., M. Corada, P. Andriopoulou, E. S., W. Risau, and E. Dejana. Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J. Cell. Sci. 110:2065–2077, 1997.

    Google Scholar 

  71. Langille, B. L. and S. L. Adamson. Relationship between blood-flow direction and endothelial-cell orientation at arterial branch sites in rabbits and mice. Circ. Res. 48:481–488, 1981.

    Google Scholar 

  72. Laurindo, F. R. M., M. D. Pedro, H. V. Barbeiro, F. Pileggi, M. H. C. Carvalho, O. Augusto, and P. L. Daluz. Vascular free-radical release: Ex vivo and in vivo evidence for a flow-dependent endothelial mechanism. Circ. Res. 74:700–709, 1994.

    Google Scholar 

  73. Lin, S. J., K. M. Jan, S. Weinbaum, and S. Chien. Transendothelial transport of low density lipoprotein in association with cell mitosis in rat aorta. Arteriosclerosis (Dallas) 9:230–236, 1989.

    Google Scholar 

  74. Lum, H., H. A. Jaffe, I. T. Schulz, A. Masood, A. Raychaudhury, and R. D. Green. Expression of PKA inhibitor PKI gene abolishes cAMP-mediated protection to endothelial barrier dysfunction. Am. J. Physiol. 277:C580–C588, 1999.

    Google Scholar 

  75. Ma, P., X. Li, and D. N. Ku. Convective mass transfer at the carotid bifurcation. J. Biomech. 30:565–571, 1997.

    Google Scholar 

  76. Malinauskas, R. A., R. A. Herrmann, and G. A. Truskey. The distribution of intimal white blood cells in the normal rabbit aorta. Arteriosclerosis (Dallas) 115:147–163, 1995.

    Google Scholar 

  77. Mathur, A. B., G. A. Truskey, and W. M. Reichert. Atomic force and total internal reflection fluorescence microscopy to study force transmission in endothelial cells. Biophys. J. 78:1725–1735, 2000.

    Google Scholar 

  78. Meyer, D. J. and V. H. Huxley. Capillary hydraulic conductivity is elevated by cgmp-dependent vasodilators. Circ. Res. 70:382–391, 1992.

    Google Scholar 

  79. Michel, C. C. and F. E. Curry. Microvascular permeability. Physiol. Rev. 79:703–761, 1999.

    Google Scholar 

  80. Mitic, L. L. and J. M. Anderson. Molecular architecture of tight junctions. Annu. Rev. Physiol. 60:121–142, 1998.

    Google Scholar 

  81. Mitic, L. L., C. M. van Itallie, and J. M. Anderson. Molecular physiology and pathophysiology of tight junctions. I. Tight junction structure and function: lessons from mutant animals and proteins. Am. J. Physiol. 289:G250–G254, 2000.

    Google Scholar 

  82. Morita, T., H. Kurihara, K. Maemura, M. Yoshizumi, and Y. Yazaki. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J. Clin. Invest. 92:1706–1712, 1993.

    Google Scholar 

  83. Moy, A. B., K. Blackwell, and A. Kamath. Differential effects of histamine and thrombin on endothelial barrier function through actin-myosin tension. Am. J. Physiol. 282:H21–H29, 2002.

    Google Scholar 

  84. Moy, A. B., J. Van Engelenhoven, J. Bodmer, J. Kamath, C. Keese, I. Giaever, S. Shasby, and D. M. Shasby. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J. Clin. Invest. 97:1020–1027, 1996.

    Google Scholar 

  85. Moy, A. B., M. Winter, A. Kamath, K. Blackwell, G. Reyes, I. Giaever, C. Keese, and D. M. Shasby. Histamine alters endothelial barrier function at cell-cell and cell-matrix sites. Am. J. Physiol. 278:L888–L898, 2000.

    Google Scholar 

  86. Nerem, R. M., A. T. Mosberg, and W. D. Schwerin. Transendothelial transport of 131I-albumin. Biorheology 13:71–77, 1976.

    Google Scholar 

  87. Nielsen, L. B., B. G. Nordestgaard, S. Stender, and K. Kjeldsen. Aortic permeaility to LDL as a predictor of aortic cholesterol accumulation in cholesterol-fed rabbits. Arterioscler. Thromb. 12:1402–1409, 1992.

    Google Scholar 

  88. Nishikawa, M., P. Delanerolle, T. M. Lincoln, and R. S. Adelstein. Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic AMPdependent protein kinase and by cyclic GMP-dependent protein kinase. J. Biol. Chem. 259:8429–8436, 1984.

    Google Scholar 

  89. Noria, S., D. B. Cowan, A. I. UGotlieb, and B. L. Langille. Transient and steady state effects of shear stress on endothelial cell adherens junctions. Circ. Res. 85:504–514, 1999.

    Google Scholar 

  90. Okamoto, T., A. Schlegel, P. E. Scherer, and M. P. Lisanti. Caveolins, a family of scaffolding proteins for organizing preassembled signaling complexes” at the plasma membrane. J. Biol. Chem. 273:5419–5422, 1998.

    Google Scholar 

  91. Olivier, L. A., J. Yen, W. M. Reichert, and G. A. Truskey. Short-term cell/substrate contact dynamics of subconfluent endothelial cells following exposure to laminar flow. Biotechnol. Prog. 15:33–42, 1999.

    Google Scholar 

  92. Penn, M. S. and G. M. Chisolm. Relation between lipopolysaccharide-induced endothelial cell injury and entry of macromolecules into the rat aorta in vivo. Circ. Res. 68:1259–1269, 1991.

    Google Scholar 

  93. Phelps, J. E. and N. DePaola. Spatial variations in endothelial barrier function in disturbed flows in vitro. Am. J.Physiol. 278:H469–H476, 2000.

    Google Scholar 

  94. Pohl, U., J. Holtz, R. Busse, and E. Bassenge.Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44, 1986.

    Google Scholar 

  95. Predescu, D., R. Horvat, S. Predescu, and G. E. Palade. Transcytosis in the continuous endothelium of the myocardial microvasculature Is inhibited by N-ethylmaleimide. Proc. Natl. Acad. Sci. U.S.A. 91:3014–3018, 1994.

    Google Scholar 

  96. Rothberg, K. G., J. E. Heuser, W. C. Donzell, Y. S. Ying, J. R. Glenney, and R. G. W. Anderson. Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682, 1992.

    Google Scholar 

  97. Rutledge, J. C., F. E. Curry, J. F. Lenz, and P. A. Davis. Low density lipoprotein transport across a microvascular endothelial barrier after permeability is increased. Circ. Res. 66:486–495, 1990.

    Google Scholar 

  98. Sakakibara, A., M. Furuse, M. Saitou, Y. Ando-Akatsuka, and S. Tsukita. Possible involvement of phosphorylation of occludin in tight junction formation. J. Cell Biol. 137:1393–1401, 1997.

    Google Scholar 

  99. Satcher, R. L. and C. F. Dewey. Theoretical estimates of mechanical properties of the cell cytoskeleton. Biophys. J. 71:109–118, 1996.

    Google Scholar 

  100. Saulpaw, C. E. and W. L. Joyner. Bradykinin and tumor necrosis factor-alpha alter albumin transport in vivo: A comparative study. Microvasc. Res. 54:221–232, 1997.

    Google Scholar 

  101. Schnittler, H. J. Structural and functional aspects of intercellular junctions in vascular endothelium. Basic Res. Cardiol. 93:30–39, 1998.

    Google Scholar 

  102. Schnittler, H. J., B. Puschel, and D. Drenckhahn. Role of cadherins and plakoglobin in interendothelial adhesion under resting conditions and shear stress. Am. J. Pathol. 273:H2396–H2405, 1997.

    Google Scholar 

  103. Schnitzer, J. E., P. Oh, E. Pinney, and J. Allard. Filipinsensitive caveolae-mediated transport in endotheliumreduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127:1217–1232, 1994.

    Google Scholar 

  104. Schubert, W., P. G. Frank, B. Razani, D. S. Park, C.-W. Chow, and M. P. Lisanti. Caveolae-deficient endothelial cells show defects in the uptake and transport of albumin in vivo. J. Biol. Chem. 276:48619–48622, 2001.

    Google Scholar 

  105. Schwenke, D. C. and T. E. Carew. Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis (Dallas) 9:908–918, 1989.

    Google Scholar 

  106. Seebach, J., P. Dieterich, F. Luo, H. Schillers, D. Vestweber, H. Oberleithner, H. J. Galla, and H. J. Schnittler. Endothelial barrier function under laminar fluid shear stress. Lab. Invest. 80:1819–1831, 2000.

    Google Scholar 

  107. Sill, H. W., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 37:H535–H543, 1995.

    Google Scholar 

  108. Simionescu, N., M. Siminoescu, and G. E. Palade. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J. Cell Biol. 64:586–607, 1975.

    Google Scholar 

  109. Smaje, L., P. A. Fraser, and C. G.. The distensibility of single capillaries and venules in the cat mesentery. Microvasc. Res. 20:358–370, 1980.

    Google Scholar 

  110. Smart, E. J., G. A. Graf, M. A. McNiven, W. C. Sessa, J. A. Engelman, P. E. Scherer, T. Okamoto, and M. P. Lisanti. Caveolins, liquid-ordered domains and signal transduction. Molecular Cell. Biol. 19:7289–7304, 1999.

    Google Scholar 

  111. Somer, J. B. and C. J. Schwartz. Focal 3H-cholesterol uptake in pig aorta. Atherosclerosis 13:293–304, 1971.

    Google Scholar 

  112. Staughton, T. J., M. J. Lever, and P. D. Weinberg. Effect of altered flow on the pattern of permeability around rabbit aortic branches. Am. J. Physiol. 281:H53–H59, 2001.

    Google Scholar 

  113. Tarbell, J. M., L. Demaio, and M. M. Zaw. Effect of pressure on hydraulic conductivity of endothelial monolayers: role of endothelial cleft shear stress. J. Appl. Physiol. 87:261–268, 1999.

    Google Scholar 

  114. Tarbell, J. M., and Y. Qui, Arterial wall mass transport: the possible role of blood phase resistance in the localization of arterial disease. In The Biomedical Engineering Handbook, edited by J. D. Bronzino. Boca Raton: CRC Press, 2000, pp. 100.1-100.15.

    Google Scholar 

  115. Tinsley, J. H., P. de Lanerolle, E. Wilson, W. Y. Ma, and S. Y. Yuan. Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am. J. Physiol. 279:C1285–C1289, 2000.

    Google Scholar 

  116. Tompkins, R. G.. Quantitative analysis of blood vessel permeability of squirrel monkeys. Am. J. Physiol. 260:H1194–H1204, 1991.

    Google Scholar 

  117. Tozer, E. and T. Carew. Residence time of low-density lipoprotein in the normal and atherosclerotic rabbit aorta. Circ. Res. 80:208–218, 1997.

    Google Scholar 

  118. Truskey, G. A. Low density lipoprotein transport and metabolism in the arterial wall. PhD, Massachusetts Institute of Technology, 1985.

  119. Truskey, G. A., C. K. Colton, and K. A. Smith, Quantitative analysis of protein transport in the arterial wall. In Structure and Function of the Circulation, edited by Schwartz C. J. W. N. T. and S. Wolf. Cambridge: Plenum, 1981, pp. 287–355.

    Google Scholar 

  120. Truskey, G. A., W. L. Roberts, R. A. Herrmann, and R. A. Malinauskas. Measurement of endothelial permeability to I-125 low-density lipoproteins in rabbit arteries by use of en face preparations. Circ. Res. 71:883–897, 1992.

    Google Scholar 

  121. Tseng, H. and B. C. Berk. Fluid shear-stress stimulates mitogen-activated protein-kinases in bovine aortic endothelial cells. Circulation 88:184–184, 1993.

    Google Scholar 

  122. Tsukita, S. and M. Furuse. Occludins and claudins in tightjunction strands: leading or supporting players? Trends Cell Biol. 9:268–273, 1999.

    Google Scholar 

  123. Ukropec, J. A., M. K. Hollinger, S. M. Salva, and M. J. Woolkalis. SHP2 association with VE-cadherin complexes in human endothelial cells Is regulated by thrombin. Biol. Chem. 275:5983–5986, 2000.

    Google Scholar 

  124. Van Hinsbergh, V. W. M.. Endothelial permeability for macromolecules: mechanistic aspects of pathophysiological modulation. Arterioscler., Thromb. Vasc. Biol. 17:1018–1023, 1997.

    Google Scholar 

  125. van Nieuw Amerongen, G. P., R. Draijer, M. A. Vermeer, and V. W. M. van Hinsbergh. Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and rhoA. Circ. Res. 83:1115–1123, 1998.

    Google Scholar 

  126. van Nieuw Amerongen, G. P. and V. W. M. van Hinsbergh. Cytoskeletal effects of rho-like small guanine nucleotide-binding proteins in the vascular system. Arterioscler., Thromb. Vasc. Biol. 21:300–311, 2001.

    Google Scholar 

  127. Verin, A. D., L. I. Gilbert-McClain, C. E. Patterson, and J. G. Garcia. Biochemical regulation of the nonmuscle myosin light chain kinase isoform in bovine endothelium. Am. J. Respir. Cell Mol. Biol. 19:767–776, 1998.

    Google Scholar 

  128. Vink, H. and B. R. Duling. Capillary endothelial surface 445 Endothelial Permeability layer selectively reduces plasma solute distribution volume. Am. J. Physiol. 278:H285–H289, 2000.

    Google Scholar 

  129. Wachtel, M., K. Frei, E. Ehler, A. Fontana, K. Winterhalter, and S. M. Gloor. Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J. Cell. Sci. 112:4347–4356, 1999.

    Google Scholar 

  130. Weinbaum, S., G. Tzeghai, P. Ganatos, R. Pfeffer, and S. Chien. Effect of cell turnover and leaky junctions on arterial macromelecular transport. Am. J. Physiol. 248:H945–H960, 1986.

    Google Scholar 

  131. Weinbaum, S., and S. Chien. Lipid transport aspects of atherogenesis. J. Biomech. Eng. 115:602–610, 1993.

    Google Scholar 

  132. Whisler, R. L., M. A. Goyette, I. S. Grants, and Y. G. Newhouse. Sublethal levels of oxidant stress stimulate multiple serine threonine kinases and suppress protein phosphatases in Jurkat T-cells. Arch. Biochem. Biophys. 319:23–35, 1995.

    Google Scholar 

  133. Wiklund, O., T. E. Carew, and D. Steinberg. Role of the low density lipoprotein receptor in the penetration of low density lipoprotein into the rabbit aortic wall. Arteriosclerosis (Dallas) 5:135–141, 1985.

    Google Scholar 

  134. Williams, D. A.. Network assessment of capillary hydraulic conductivity after abrupt changes in fluid shear stress. Microvasc. Res. 57:107–117, 1999.

    Google Scholar 

  135. Williams, D. A. and V. H. Huxley. Bradykinin-induced elevations of hydraulic conductivity display spatial and temporal variations in frog capillaries. Am. J. Physiol. 264:H1575–H1581, 1993.

    Google Scholar 

  136. Williams, K. J., and I. Tabas. The response-to-retention hypothesis of early atherogenesis. Arterioscler., Thromb. Vasc. Biol. 15:551–561, 1995.

    Google Scholar 

  137. Wolburg, H., J. Neuhaus, U. Kniesel, B. Krauss, E. M. Schmid, M. Ocalan, C. Farrell, and W. Risau. Modulation of tight junction structure in blood-brain barrier endothelialcells—Effects of tissue culture, second messengers and cocultured astrocytes. J. Cell. Sci. 107:1347–1357, 1994.

    Google Scholar 

  138. Yeh, L. H., Y. J. Park, R. J. Hansalia, I. S. Ahmed, S. S. Deshpande, P. J. Goldschmidt-Clermont, K. Irani, and B. R. Alevriadou. Shear-induced tyrosine phosphorylation in endothelial cells requires Rac1-dependent production of ROS. Am. J. Physiol. 276:C838–C847, 1999.

    Google Scholar 

  139. Yuan, Y. A., H. J. Granger, D. C. Zawieja, D. V. Defily, and W. M. Chilian. Histamine increases venular permeability via a phospholipase-C-NO synthase-guanylate cyclase cascade. Am. J. Physiol. 264:H1734–H1739, 1993.

    Google Scholar 

  140. Zand, T., G. Majno, J. J. Nunnar, A. H. Hoffman, B. J. Savillonis, B. MacWilliams, and I. Joris. Lipid deposition and aortic stenosis. Am. J. Pathol. 139:101–113, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogunrinade, O., Kameya, G.T. & Truskey, G.A. Effect of Fluid Shear Stress on the Permeability of the Arterial Endothelium. Annals of Biomedical Engineering 30, 430–446 (2002). https://doi.org/10.1114/1.1467924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1467924

Navigation