Skip to main content

Mechanobiology of Endothelial Cells Related to the Pathogenesis of Arterial Disease

  • Chapter
  • First Online:
Vascular Engineering
  • 864 Accesses

Abstract

Arteriosclerosis occurs preferentially at the inner curvature of blood vessels where shear stress induced by blood flow is low. Endothelial cells, which line the inner surface of blood vessels, transport all substances from vessels to tissues. It is well known that many functions of endothelial cells are affected by fluid shear stress, and it has been hypothesized that the dysfunction of endothelial transport is related to arteriogenesis. Endothelial transport is divided into two primary types: paracellular transport, which is passive, and transcellular transport, which is active. In this chapter, we introduce these endothelial transport processes and discuss the ways they are influenced by various shear stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Caro C, Fitz-Gerald J, Schroter R (1969) Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1161

    Article  CAS  PubMed  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3):H1209

    Article  CAS  PubMed  Google Scholar 

  • Chien S (2008) Effects of disturbed flow on endothelial cells. Ann Biomed Eng 36(4):554–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Investig 73(4):1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giaever I, Keese CR (1991) Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci 88(17):7896–7900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo H, Dull R, Hollis T, Tarbell J (1991) Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am J Physiol Heart Circ Physiol 260(6):H1992–H1996

    CAS  Google Scholar 

  • Kedem O, Katchalsky A (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim Biophys Acta 27:229–246

    Article  CAS  PubMed  Google Scholar 

  • Ku DN, Giddens DP, Zarins CK, Glagov S (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 5(3):293–302

    Article  CAS  Google Scholar 

  • Kudo S, Ikezawa K, Ikeda M, Oka K, Tanishita K (1997) Albumin concentration profile inside cultured endothelial cells exposed to shear stress. ASME Publ Bed 35:547–548

    Google Scholar 

  • Kudo S, Ikezawa K, Matsumura S, Ikeda M, Oka K, Tanishita K (1998a) Effect of wall shear stress on macromolecule uptake into cultured endothelial cells. Trans Jpn Soc Mech Eng B 64(618):367–374

    Article  CAS  Google Scholar 

  • Kudo S, Ikezawa K, Matsumura S, Ikeda M, Oka K, Tanishita K (1998b) Relationship between energy-dependent macromolecule uptake and transport granules in the endothelial cells affected by wall shear stress. Trans Jpn Soc Mech Eng B 64(623):2123–2131

    Article  CAS  Google Scholar 

  • Kudo S, Sato M, Machida K, Yamaguchi R, Kurokawa M, Matsuzawa T, Ikeda M, Oka K, Tanishita K (1999) Macromolecule uptake into the cultured endothelial cells and the cell morphology in separated flow. Trans Jpn Soc Mech Eng B 65(639):3705–3712

    Article  CAS  Google Scholar 

  • Kudo S, Morigaki R, Saito J, Ikeda M, Oka K, Tanishita K (2000) Shear-stress effect on mitochondrial membrane potential and albumin uptake in cultured endothelial cells. Biochem Biophys Res Commun 270(2):616–621

    Article  CAS  PubMed  Google Scholar 

  • Kudo S, Ikezawa K, Ikeda M, Tanishita K (2004) Relationship between microtubule network structure and intracellular transport in cultured endothelial cells affected by shear stress. JSME Int J Ser C 47(4):977–984

    Article  Google Scholar 

  • Kudo S, Tsuzaka M, Ikeda M, Tanishita K (2005) Albumin permeability across endothelial monolayers under long-term shear stress. JSME Int J Ser C 48(4):419–424

    Article  Google Scholar 

  • Kudo S, Kawarabayashi M, Ikeda M, Tanishita K (2013) Albumin permeability across endothelial monolayers under pulsatile shear stress. J Biorheol 26(1):38–43

    Article  Google Scholar 

  • Li Y-SJ, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971

    Article  PubMed  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86(1):279–367

    Article  CAS  PubMed  Google Scholar 

  • Ogunrinade O, Kameya GT, Truskey GA (2002) Effect of fluid shear stress on the permeability of the arterial endothelium. Ann Biomed Eng 30(4):430–446

    Article  PubMed  Google Scholar 

  • Ohshima N, Ookawa K (1994) Effect of shear stress on cytoskeletal structure and physiological functions of cultured endothelial cells. In: Mow VC, Guilak F, Tran-Son-Tay R, Hochmuth RM (eds) Cell mechanics and cellular engineering. Springer-Verlag New York, Inc., New York, pp 107–117

    Chapter  Google Scholar 

  • Packham M, Rowsell H, Jorgensen L, Mustard J (1967) Localized protein accumulation in the wall of the aorta. Exp Mol Pathol 7(2):214–232

    Article  CAS  PubMed  Google Scholar 

  • Phelps JE, DePaola N (2000) Spatial variations in endothelial barrier function in disturbed flows in vitro. Am J Physiol Heart Circ Physiol 278(2):H469–H476

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J Biol Chem 269(8):6072–6082

    CAS  PubMed  Google Scholar 

  • Sill HW, Chang YS, Artman JR, Frangos J, Hollis T, Tarbell J (1995) Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am J Physiol Heart Circ Physiol 268(2):H535–H543

    CAS  Google Scholar 

  • Somer J, Schwartz C (1972) Focal (3 H) cholesterol uptake in the pig aorta. 2. Distribution of (3 H) cholesterol across the aortic wall in areas of high and low uptake in vivo. Atherosclerosis 16(3):377–388

    Article  CAS  PubMed  Google Scholar 

  • Sprague EA, Steinbach BL, Nerem RM, Schwartz CJ (1987) Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation 76(3):648–656

    Article  CAS  PubMed  Google Scholar 

  • Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83(3):871–932

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Shimomura M, Ikeda M, Yamaguchi R, Tanishita K (2004) Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am J Physiol Heart Circ Physiol 287(5):H2287–H2294

    Article  CAS  PubMed  Google Scholar 

  • Warboys CM, Berson RE, Mann GE, Pearson JD, Weinberg PD (2010) Acute and chronic exposure to shear stress have opposite effects on endothelial permeability to macromolecules. Am J Physiol Heart Circ Physiol 298(6):H1850–H1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Sue W, Okano M, Oyama T, Yamane T, Mitsumata M (1990) The effects of augmented hemodynamic forces on the progression and topography of atherosclerotic plaques. Ann N Y Acad Sci 598(1):256–273

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Kudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kudo, S. (2016). Mechanobiology of Endothelial Cells Related to the Pathogenesis of Arterial Disease. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics