Skip to main content

Advertisement

Log in

Role of Subcellular Shear–Stress Distributions in Endothelial Cell Mechanotransduction

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The endothelium of blood vessels presents a wavy surface to the flowing blood. The subcellular distribution of shear stress depends on the shape and orientation of the cells and on their spatial arrangement within the monolayer. By studying details of the distribution of stress at this scale and the morphological responses that serve to modify the distribution, we can gain insight into the physical mechanisms by which the cell senses its fluid mechanical environment. The rapidly growing body of evidence indicates that endothelial cells discriminate between subtle variations in the exact loading conditions including differences in temporal and spatial gradients of shear stress, steady and pulsatile laminar flow, and laminar and turbulent flows. While in a few studies the effects of these individual flow characteristics have been carefully isolated, it is difficult to assess the relative importance of any one parameter. To interpret the relationships between isolated flow characteristics or the integrated effects of combined loading conditions and the biochemical signaling events that mediate the cell response, a full stress analysis of the cell is needed. The microscopic distribution of shear stress acting upon the cell surface provides the boundary condition for such an analysis. Experimental and analytical tools are being developed to assess the stress distribution throughout the cellular structures that might be involved in mechanotransduction. © 2002 Biomedical Engineering Society.

PAC2002: 8716Xa, 8719Uv, 8719Xx

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bao, X., C. B. Clark, and J. A. Frangos. Temporal gradient in shear-induced signaling pathway: Involvement of MAP kinase, c-fos, and connexin43. Am. J. Physiol. 278:H1598–H1605, 2000.

    Google Scholar 

  2. Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: Role of NO, NF kappa B, and egr-1. Arterioscler., Thromb., Vasc. Biol. 19:996–1003, 1999.

    Google Scholar 

  3. Barbee, K. A. Changes in surface topography in endothelial monolayers with time at confluence: Influence on subcellular shear stress distribution due to flow. Biochem. Cell Biol. 73:501–505, 1995.

    Google Scholar 

  4. Barbee, K. A., P. F. Davies, and R. Lal. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res. 74:163–171, 1994.

    Google Scholar 

  5. Barbee, K. A., T. Mundel, R. Lal, and P. F. Davies. Subcellular distribution of shear stress at the surface of flow-aligned and nonaligned endothelial monolayers. Am. J. Physiol. 268:H1765–H1772, 1995.

    Google Scholar 

  6. Berk, B. C., M. A. Corson, T. E. Peterson, and H. Tseng. Protein kinases as mediators of fluid shear stress stimulated signal transduction in endothelial cells: A hypothesis for calcium-dependent and calcium-independent events activated by flow. J. Biomech. 28:1439–1450, 1995.

    Google Scholar 

  7. Binnig, G., C. F. Quate, and C. Gerber. Atomic force microscope. Phys. Rev. Lett. 56:930–933, 1986.

    Google Scholar 

  8. Blackman, B. R., S. Aravind, T. N. Tulenko, and K. A. Barbee. Cholesterol suppresses endothelial cell calcium response to shear stress. Ann. Biomed. Eng. 26:S27, 2001.

    Google Scholar 

  9. Blackman, B. R., K. A. Barbee, and L. E. Thibault. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Ann. Biomed. Eng. 28:363–372, 2000.

    Google Scholar 

  10. Blackman, B. R., L. E. Thibault, and K. A. Barbee. Selective modulation of endothelial cell [Ca2+]iresponse to flow by the onset rate of shear stress. J. Biomech. Eng. 122:274–282, 2000.

    Google Scholar 

  11. Butler, P. J., G. Norwich, S. Weinbaum, and S. Chien. Shear stress induces a time-and position-dependent increase in endothelial cell membrane fluidity. Am. J. Physiol. 280:C962–C969, 2001.

    Google Scholar 

  12. Butler, P. J., S. Weinbaum, S. Chien, and D. E. Lemons. Endothelium-dependent, shear-induced vasodilation is ratesensitive. Microcirculation (Philadelphia) 7:53–65, 2000.

    Google Scholar 

  13. Chien, S., M. M. Lee, L. S. Laufer, D. A. Handley, S. Weinbaum, C. G. Caro, and S. Usami. Effects of oscillatory mechanical disturbance on macromolecular uptake by arterial wall. Arteriosclerosis (Dallas) 1:326–336, 1981.

    Google Scholar 

  14. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Google Scholar 

  15. Davies, P. F., C. F. Dewey, Jr., S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone, Jr. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Invest. 73:1121–1129, 1984.

    Google Scholar 

  16. Davies, P. F., T. Mundel, and K. A. Barbee. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J. Biomech. 28:1553–1560, 1995.

    Google Scholar 

  17. Davies, P. F., D. C. Polacek, J. S. Handen, B. P. Helmke, and N. DePaola. A spatial approach to transcriptional profiling: Mechanotransduction and the focal origin of atherosclerosis. Trends Biotechnol. 17:347–351, 1999.

    Google Scholar 

  18. Davies, P. F., A. Remuzzi, E. J. Gordon, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc. Natl. Acad. Sci. U.S.A. 83:2114–2117, 1986.

    Google Scholar 

  19. Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion. Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.

    Google Scholar 

  20. DePaola, N., P. F. Davies, W. F. Pritchard, Jr., L. Florez, N. Harbeck, and D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. U.S.A. 96:3154–3159, 1999.

    Google Scholar 

  21. DePaola, N., M. A. Gimbrone, Jr., P. F. Davies, and C. F. Dewey, Jr. Vascular endothelium responds to fluid shear stress gradients. Arterioscler. Thromb. 12:1254–1257, 1992.

    Google Scholar 

  22. Eberwine, J., H. Yeh, K. Miyashiro, Y. Cao, S. Nair, R. Finnell, M. Zettel, and P. Coleman. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. U.S.A. 89:3010–3014, 1992.

    Google Scholar 

  23. Flaherty, J. T., J. E. Pierce, V. J. Ferrans, D. J. Patel, W. K. Tucker, and D. L. Fry. Endothelial nuclear patterns in the canine arterial tree with particular reference to hemodynamic events. Circ. Res. 30:23–33, 1972.

    Google Scholar 

  24. Frangos, J. A., T. Y. Huang, and C. B. Clark. Steady shear and step changes in shear stimulate endothelium via independent mechanisms—Superposition of transient and sustained nitric oxide production. Biochem. Biophys. Res. Commun. 224:660–665, 1996.

    Google Scholar 

  25. Fukushima, S., T. Deguchi, M. Kaibara, K. Oka, and K. Tanishita, Microscopic velocimetry with a scaled-up model for evaluating a flow field over cultured endothelial cells. J. Biomech. Eng. (in press).

  26. Fung, Y. C. Foundations of Solid Mechanics. Englewood Cliffs, NJ: Prentice-Hall, 1965.

    Google Scholar 

  27. Fung, Y. C., and S. Q. Liu. Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115:1–12, 1993.

    Google Scholar 

  28. Garcia-Cardena, G., J. Comander, K. R. Anderson, B. R. Blackman, and M. A. Gimbrone, Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. U.S.A. 98:4478–4485, 2001.

    Google Scholar 

  29. Glagov, S., C. K. Zarins, N. Masawa, C. P. Xu, H. Bassiouny, and D. P. Giddens. Mechanical functional role of nonatherosclerotic intimal thickening. Front Med. Biol. Eng. 5:37–43, 1993.

    Google Scholar 

  30. Gudi, S., J. P. Nolan, and J. A. Frangos. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc. Natl. Acad. Sci. U.S.A. 95:2515–2519, 1998.

    Google Scholar 

  31. Haidekker, M. A., N. L'Heureux, and J. A. Frangos. Fluid shear stress increases membrane fluidity in endothelial cells: A study with DCVJ fluorescence. Am. J. Physiol. 278:H1401–H1406, 2000.

    Google Scholar 

  32. Haidekker, M. A., T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos, and E. A. Theodorakis. New fluorescent probes for the measurement of cell membrane viscosity. Chem. Biol. 8:123–131, 2001.

    Google Scholar 

  33. Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D'Costa, S. Nageswaran, C. A. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.

    Google Scholar 

  34. Helmke, B. P., R. D. Goldman, and P. F. Davies. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86:745–752, 2000.

    Google Scholar 

  35. Helmke, B. P., D. B. Thakker, R. D. Goldman, and P. F. Davies. Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys. J. 80:184–194, 2001.

    Google Scholar 

  36. Helmlinger, G., R. V. Geiger, S. Schreck, and R. M. Nerem. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J. Biomech. Eng. 113:123–131, 1991.

    Google Scholar 

  37. Holland, J. A., K. A. Pritchard, N. J. Rogers, and M. B. Stemerman. Perturbation of cultured human endothelial cells by atherogenic levels of low density lipoprotein. Am. J. Pathol. 132:474–478, 1988.

    Google Scholar 

  38. James, S. R., A. Paterson, T. K. Harden, R. A. Demel, and C. P. Downes. Dependence of the activity of phospholipase C beta on surface pressure and surface composition in phospholipid monolayers and its implications for their regulation. Biochemistry 36:848–855, 1997.

    Google Scholar 

  39. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239:H14–H21, 1980.

    Google Scholar 

  40. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas) 5:293–302, 1985.

    Google Scholar 

  41. Kuchan, M. J., and J. A. Frangos. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–C636, 1994.

    Google Scholar 

  42. Lal, R., and S. A. John. Biological applications of atomic force microscopy. Am. J. Physiol. 266:C1–21, 1994.

    Google Scholar 

  43. Langille, B. L., and F. O'Donnell. Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407, 1986.

    Google Scholar 

  44. Laury-Kleintop, L. D., M. Gleason, and T. N. Tulenko. Expression of the heterogenous nuclear ribonucleoprotein complex K protein and the prolyl-4-hydroxylase alpha-subunit in atherosclerotic arterial smooth muscle cells. Biochem. Biophys. Res. Commun. 260:382–389, 1999.

    Google Scholar 

  45. Liu, S. Q., M. Yen, and Y. C. Fung. On measuring the third dimension of cultured endothelial cells in shear flow. Proc. Natl. Acad. Sci. U.S.A. 91:8782–8786, 1994.

    Google Scholar 

  46. Lundbaek, J. A., P. Birn, J. Girshman, A. J. Hansen, and O. S. Andersen. Membrane stiffness and channel function. Biochemistry 35:3825–3830, 1996.

    Google Scholar 

  47. Malinauskas, R. A., P. Sarraf, K. M. Barber, and G. A. Truskey. Association between secondary flow in models of the aorto-celiac junction and subendothelial macrophages in the normal rabbit. Atherosclerosis 140:121–134, 1998.

    Google Scholar 

  48. Mathur, A. B., G. A. Truskey, and W. M. Reichert. Total internal reflection microscopy and atomic force microscopy (TIRFM-AFM) to study stress transduction mechanisms in endothelial cells. Crit. Rev. Biomed. Eng. 28:197–202, 2000.

    Google Scholar 

  49. Meinhart, C. D., S. T. Werely, and J. G. Santiago. PIV measurements of a microchannel flow. Exp. Fluids 27:414–419, 1999.

    Google Scholar 

  50. Morita, T., H. Kurihara, K. Maemura, M. Yoshizumi, and Y. Yazaki. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J. Clin. Invest. 92:1706–1712, 1993.

    Google Scholar 

  51. Nerem, R. M., M. J. Levesque, and J. F. Cornhill. Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–176, 1981.

    Google Scholar 

  52. Ojha, M. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model. J. Biomech. 26:1377–1388, 1993.

    Google Scholar 

  53. Plopper, G., and D. E. Ingber. Rapid induction and isolation of focal adhesion complexes. Biochem. Biophys. Res. Commun. 193:571–578, 1993.

    Google Scholar 

  54. Pohl, U., J. Holtz, R. Busse, and E. Bassenge. Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension 8:37–44, 1986.

    Google Scholar 

  55. Rebecchi, M., M. Bonhomme, and S. Scarlata. Role of lipid packing in the activity of phospholipase C-δ 1 as determined by hydrostatic pressure measurements. Biochem. J. 341:571–576, 1999.

    Google Scholar 

  56. Remuzzi, A., C. F. Dewey, Jr., P. F. Davies, and M. A. Gimbrone, Jr.. Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–630, 1984.

    Google Scholar 

  57. Rizzo, V., D. P. McIntosh, P. Oh, and J. E. Schnitzer. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association. J. Biol. Chem. 273:34724–34729, 1998.

    Google Scholar 

  58. Satcher, Jr., R. L., S. R. Bussolari, M. A. Gimbrone, Jr., and C. F. Dewey, Jr. The distribution of fluid forces on model arterial endothelium using computational fluid dynamics. J. Biomed. Eng. 114:309–316, 1992.

    Google Scholar 

  59. Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.

    Google Scholar 

  60. Smalley, D. M., J. H. Lin, M. L. Curtis, Y. Kobari, M. B. Stemerman, and K. A. Pritchard, Jr. Native LDL increases endothelial cell adhesiveness by inducing intercellular adhesion molecule-1. Arterioscler., Thromb., Vasc. Biol. 16:585–590, 1996.

    Google Scholar 

  61. Walpola, P. L., A. I. Gotlieb, M. I. Cybulsky, and B. L. Langille. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler., Thromb., Vasc. Biol. 15:2–10, 1995.

    Google Scholar 

  62. Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.

    Google Scholar 

  63. Yamada, S., D. Wirtz, and S. C. Kuo. Mechanics of living cells measured by laser tracking microrheology. Biophys. J. 78:1736–1747, 2000.

    Google Scholar 

  64. Yamaguchi, T., K. Hoshiai, H. Okino, A. Sakurai, S. Hanai, M. Masuda, and Fujiwara. Shear stress distribution over confluently cultured endothelial cells studied by computational fluid mechanics. ASME Adv. Bioeng. BED 29:167–170,1993.

    Google Scholar 

  65. Yamaguchi, T., Y. Yamamoto, and H. Liu. Computational mechanical model studies on the spontaneous emergent morphogenesis of the cultured endothelial cells. J. Biomech. 33:115–126, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbee, K.A. Role of Subcellular Shear–Stress Distributions in Endothelial Cell Mechanotransduction. Annals of Biomedical Engineering 30, 472–482 (2002). https://doi.org/10.1114/1.1467678

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1467678

Navigation