Skip to main content
Log in

Nonparametric Block-Structured Modeling of Lung Tissue Strip Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Very large amplitude pseudorandom uniaxial perturbations containing frequencies between 0.125 and 12.5 Hz were applied to five dog lung tissue strips. Three different nonlinear block-structured models in nonparametric form were fit to the data. These models consisted of (1) a static nonlinear block followed by a dynamic linear block (Hammerstein model); (2) the same blocks in reverse order (Wiener model); and (3) the blocks in parallel (parallel model). Both the Hammerstein and Wiener models performed well for a given input perturbation, each accounting for greater than 99% of the measured stress signal variance. However, the Wiener and parallel model parameters showed some dependence on the strain amplitude and the mean stress. In contrast, a single Hammerstein model accounted for the data at all strain amplitudes and operating stresses. A Hammerstein model featuring a fifth-order polynomial static nonlinearity and a linear impulse response function of 1 s duration accounted for the most output variance (99.84% ± 0.13%, mean ± standard deviations for perturbations of 50% strain at 1.5 kPa stress). The static nonlinear behavior of the Hammerstein model also matched the quasistatic stress–strain behavior obtained at the same strain amplitude and operating stress. These results show that the static nonlinear behavior of the dog lung tissue strip is separable from its linear dynamic behavior. © 1998 Biomedical Engineering Society.

PAC98: 8745Bp, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Barnas, G. M., D. Stamenovic, K. R. Lutchen, and C. F. Mackenzie. Lung and chest wall impedances in the dog: Effects of frequency and tidal volume. J. Appl. Physiol. 72:87-93, 1992.

    Google Scholar 

  2. 2 Bates, J. H. T., G. N. Maksym, D. Navajas, and B. Suki. Lung tissue rheology and 1/f noise. Ann. Biomed. Eng. 22:674-681, 1994.

    Google Scholar 

  3. Dechman, G. S., D. A. Chartrand, P. P. Ruiz-Neto, and J. H. T. Bates. The effect of changing end-expiratory pressure on respiratory system mechanics in open-and closed-chest anesthetized, paralyzed patients. Anesth. Analg. 81:279-286, 1995.

    Google Scholar 

  4. Fredberg, J. J., D. Bunk, E. Ingenito, and S. A. Shore. Tissue resistance and the contractile state of lung parenchyma. J. Appl. Physiol. 74:1387-1397, 1993.

    Google Scholar 

  5. Fredberg, J. J., and D. Stamenovic. On the imperfect elasticity of lung tissue. J. Appl. Physiol. 67:2408-2419, 1989.

    Google Scholar 

  6. Fukaya, H., C. J. Martin, A. C. Young, and S. Katsura. Mechanical properties of alveolar walls. J. Appl. Physiol. 25:689-695, 1968.

    Google Scholar 

  7. Fung, Y. C. Biomechanics, Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1981, p. 336.

    Google Scholar 

  8. Hantos, Z., B. Daroczy, T. Csendes, B. Suki, and S. Nagy. Modeling of low-frequency pulmonary impedance in dogs. J. Appl. Physiol. 68:849-860, 1990.

    Google Scholar 

  9. Hildebrandt, J. Pressure-volume data of cat lung interpreted by a plastoelastic, linear viscoelastic model. J. Appl. Physiol. 28:365-372, 1970.

    Google Scholar 

  10. Hines, W. H., and D. C. Montgomery. Probability and Statistics in Engineering and Management Science. 3rd ed., Toronto: Wiley, 1990, pp. 569-575.

    Google Scholar 

  11. Hunter, I. W., and R. E. Kearney. Generation of random sequences with jointly specified probability density and autocorrelation functions. Biol. Cybern. 47:141-146, 1983.

    Google Scholar 

  12. Hunter, I. W., and R. E. Kearney. Two-sided linear filter identification. Med. Biol. Eng. Comp. 21:203-209, 1983.

    Google Scholar 

  13. Hunter, I. W., and M. J. Korenberg. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biol. Cybern. 55:135-144, 1986.

    Google Scholar 

  14. Korenberg, M. J., and I. W. Hunter. Identification of nonlinear biological systems: Volterra kernel approaches. Ann. Biomed. Eng. 24:250-268, 1996.

    Google Scholar 

  15. Lee, G. C., and A. Frankus. Elasticity properties of lung parenchyma derived from experimental distortion data. Biophys. J. 15:481-493, 1975.

    Google Scholar 

  16. Maksym, G. N., and J. H. T. Bates. Nonparametric block structured modeling of rat lung mechanics. Ann. Biomed. Eng. (in press).

  17. Marmarelis, P. Z., and V. Z. Marmarelis. Analysis of Physiologic Systems. New York: Plenum, 1978.

    Google Scholar 

  18. Mijailovich, S. M., D. Stamenovic, and J. J. Fredberg. Toward a kinetic theory of connective tissue micromechanics. J. Appl. Physiol. 74:665-681, 1993.

    Google Scholar 

  19. Mijailovich, S. M., D. Stamenovic, R. Brown, D. E. Lieth, and J. J. Fredberg. Dynamic moduli of rabbit lung tissue and pigeon ligamentum propatagiale undergoing uniaxial cyclic loading. J. Appl. Physiol. 76:773-782, 1994.

    Google Scholar 

  20. Moretto, A., M. Dallaire, P. Romero, and M. Ludwig. Effect of elastase on oscillation mechanics of lung parenchymal strips. J. Appl. Physiol. 77:1623-1629, 1994.

    Google Scholar 

  21. Navajas, D., G. N. Maksym, and J. H. T. Bates. Dynamic viscoelastic nonlinearity of lung parenchymal tissue. J. Appl. Physiol. 79:348-356, 1995.

    Google Scholar 

  22. Radford, E. P. Recent studies of the mechanical properties of mammalian lungs. In: Tissue Elasticity, edited by J. W. Remington. Washington, DC: Am. Physiol. Soc., 1957, pp. 177-190.

    Google Scholar 

  23. Stamenovic, D., G. M. Glass, G. M. Barnas, and J. J. Fredberg. Viscoplasticity of respiratory tissues. J. Appl. Physiol. 69:973-988, 1990.

    Google Scholar 

  24. Stamenovic, D., K. R. Lutchen, and G. M. Barnas. Alternative model of respiratory tissue viscoplasticity. J. Appl. Physiol. 75:1062-1069, 1993.

    Google Scholar 

  25. Sugihara, T., C. J. Martin, and J. Hildebrandt. Length-tension properties of alveolar wall in man. J. Appl. Physiol. 30:874-878, 1971.

    Google Scholar 

  26. Suki, B. Nonlinear phenomena in respiratory mechanical measurements. J. Appl. Physiol. 74:2574-2584, 1993.

    Google Scholar 

  27. Suki, B., A. L. Barabasi, and K. R. Lutchen. Lung tissue viscoelasticity: A mathematical framework and its molecular basis. J. Appl. Physiol. 76:2749-2759, 1994.

    Google Scholar 

  28. Suki, B., and J. H. T. Bates. A nonlinear viscoelastic model of lung tissue mechanics. J. Appl. Physiol. 71:826-833, 1991.

    Google Scholar 

  29. Suki, B., Z. Hantos, B. Daroczy, G. Alkaysi, and S. Nagy. Nonlinearity and harmonic distortion of dog lungs measured by low-frequency forced oscillations. J. Appl. Physiol. 71:69-75, 1991.

    Google Scholar 

  30. Suki, B., Q. Zhang, and K. R. Lutchen. Relationship between frequency and amplitude dependence in the lung: A nonlinear block-structured modeling approach. J. Appl. Physiol. 79:660-671, 1995.

    Google Scholar 

  31. Suwa, N., H. Fukasawa, R. Fujimoto, and M. Kawakami. Strain and stress of pulmonary tissues. Tohoku J. Exp. Med. 90:61-75, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksym, G.N., Kearney, R.E. & Bates, J.H.T. Nonparametric Block-Structured Modeling of Lung Tissue Strip Mechanics. Annals of Biomedical Engineering 26, 242–252 (1998). https://doi.org/10.1114/1.119

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.119

Navigation