Skip to main content
Log in

Immunocytochemical study of the GH cells in the anterior pituitary gland of human fetus II. Anencephalic fetus

  • Original Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In order to elucidate the effects of hypothalamic regulation on the morphology of GH cells, light and electron microscopic immunocytochemical examinations were carried out comparing GH cells in the anterior pituitary gland of anencephalic fetus with those of normal fetuses. Three types of GH cells were identifted in the anterior pituitary gland of anencephalic fetus as well as in the normal fetus. Type1 is a small, round cell containing a few small secretory granules. Type-III is a large, polygonal cell with numerous large secretory granules. Type-II is a polygonal cell with medium-sized secretory granules. The Type-II GH cell was predominant in both anencephalic and normal fetuses. The most striking difference between anencephalic and normal fetuses was the presence of atypical forms of the Type II cell. These were polygonal cells containing secretory granules, which were either immunopositive or imrnunonegative to anti-human GH (anti-hGH) serum. Furthermore, two other types of GH cells were identified. The somatomammotroph (SM cell) contained GH and PRL. in different granules within the same cell. Also. a different type of the GH cell was noted containing two varieties of secretory granules; one was immunolabeled only with anti-hGH and the other was not irnmunolabeled to either anti-hGH or anti-human PRL (anti-hPRL). From these results, we suggest that an absence of hypothalamic regulation in the anencehpalic does not seriously modify GH cell morphology but induces an altered GH storage pattern in some of the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Guillemin R, Brazeau P, Bohlen P et al.: Growth hormone-releasing factor from a human pancreatic tumor that caused acromegaly. Science 218: 585–587, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Rivier J, Spiess J, Thorner M et al.: Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300: 276–278, 1982.

    Article  PubMed  CAS  Google Scholar 

  3. Fukata J, Diamond DJ and Martin JB: Effects of rat growth hormone (rGH)-releasing factor and somatostatin on the release and synthesis of rGH in dispersed pituitary cells. Endocrinology 117: 457–467, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Barinaga M, Yamonoto G, Rivier C et al.: Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature 306: 84–85, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Barinaga M, Bilezikjian LM, Vale WW et al.: Independent effects of growth hormone releasing factor on growth hormone release and gene transcription. Nature 314: 279–281, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Billestrup N, Swanson LW and Vale W: Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc. Natl. Acad. Sci. USA 83: 6854–6857, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Bileziknjian LM and Vale WW: Stimulation of adenosine 3′, 5′ monophosphateproduction by growth hormone-releasing factor and its inhibition by somatostatin in anterior pituitary cells in vitro. Endocrinology 113: 1726–1731, 1983.

    Article  Google Scholar 

  8. Koch BD and Schonbrunn A: The somatostatin receptor is directly coupled to adenylate cyclase in GH4Cl 1 pituitary cell membranes. Endocrinology 114: 1784–1790, 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Kaplan SL, Grumbach MM and Shepard TH: The ontogenesis of human fetalhormones: I. Growth hormone and insulin. J. Clin. Invest. 51: 3080–3093, 1972.

    Article  PubMed  CAS  Google Scholar 

  10. Kaplan SL, Grumbach MM and Aubert ML: The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus: Maturation of central nervous system regulation of anterior pituitary function. Recent Progress in Hormone Research 32: 161–235, 1976.

    PubMed  CAS  Google Scholar 

  11. Cavallo L, Altomare M, Palmieri P et al.: Endocrine function in four anencephalic infants. Hormone Res. 15: 159–166, 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Tachibana T, Ito T and Kwon OH (Gon G): Immunoelectron microscopic study of the GH cell in the anterior pituitary gland of normal human fetus. Anat. Rec. 239: 177–184, 1994.

    Article  PubMed  CAS  Google Scholar 

  13. Mollenhauer HH: Plastic embedding mixtures for use in electron micrcscopy. Stain Technol. 39: 111–114, 1964.

    PubMed  CAS  Google Scholar 

  14. Aubert ML, Grumbach MM and Kaplan SL The ontogenesis of human fetal hormones. IV. Somatostatin, luteinizing hormone releasing factor, and thyrotropin releasing factor in hypothalamus and cerebral cortex of human fetuses 10–22 weeks of age. J. Clin. Endocrinol. Metab. 44: 1130–1141, 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Bugnon C, Fellmann D and Bloch B: Immunocytochemical study of the ontogenesis of the hypothalamic somatostatin-containing neurons in the human fetus. Metabolism (Suppl. 1) 27: 1161–1165, 1978.

    CAS  Google Scholar 

  16. Bresson JL, Clavequin MC, Fellmann D et al.: Ontogeny of the neuroglandular system revealed with HPGRF 44 antibodies in human hypothalamus. Neuroendocrinology 39: 68–73, 1984.

    Article  PubMed  CAS  Google Scholar 

  17. Hayek A, Driscoll SG and Warshaw JB: Endocrine shdies in anencephaly. J. Clin. Invest. 52: 1636–1641, 1973.

    Article  PubMed  CAS  Google Scholar 

  18. Furuhashi N, Fukaya T, Kono H et al.: Cord serum growth hormone in the human fetus. Sex difference and a negative correlation with birth weight. Gynecol. Obstet. Invest. 16: 119–124, 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Arosio M, Cortelazzl D, Persam L et al.: Circulating levels of growth hormone, insulin-like growth factor-1 and prolactin in normal, growth retarded and anencephalic human fetuses. J. Endocrinol. Invest. 18: 346–353, 1995.

    PubMed  CAS  Google Scholar 

  20. Track NS, Creutzfeldt C, Litzenberger J et al.: Appearance of gastrin and somatostatin in the human fetal stomach, duodenumand pancreas. Digestion 19 292–306, 1979.

    Article  PubMed  CAS  Google Scholar 

  21. Rahier J, Wallon J and Henquin JC: Abundance of somatostatin cells in the human neonatal pancreas. Diabetologia 18: 251–254, 1980.

    Article  PubMed  CAS  Google Scholar 

  22. Bryant MG, Buchan AM, Gregor M et al.: Development of intestinal regulatory peptides in the human fetus. Gastroenterology 83: 47–54, 1982.

    PubMed  CAS  Google Scholar 

  23. Itzev D, Lolova I and Davidoff M: Immunocytochemical and electron microscopical data on the differentiation of somatostatin-containing endocrine cells in human large intestine. Anat Anz. 166: 77–85, 1988.

    PubMed  CAS  Google Scholar 

  24. Dubois PM, Paulin C, Assan R et al.: Human fetal pancreas evidence for immunoreactive somatostatin in the endocrine cells. Nature 256: 731–732, 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Dubois PM and Paulin C: Gastrointestinal somatostatin cells in the human fetus. Cell Tiss. Res. 166: 179–184, 1976.

    Article  CAS  Google Scholar 

  26. Kraicer J and Chow AE: Release of growth hormone from purified somatotrophs: use of perifusion system to elucidate interrelations among Ca++, adenosine3′, 5′-monophosphate, and somatostatin. Endocrinology 111: 1173–1180, 1982.

    Article  PubMed  CAS  Google Scholar 

  27. Lin SC, Lin CR, Gukovsky I et al.: Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature 364: 208–213, 1993.

    Article  PubMed  CAS  Google Scholar 

  28. Mayo KE, Hammer RE, Swanson LW et al.: Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol. Endocrinol. 2: 606–612, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Lloyd RV, Gikas PW and Chandler WF: Prolactin and growth hormone-producing pituitary adenomas. An immunohistochemical and ultrastructural study. Am. J. Surg. Pathol. 7: 251–260, 1983.

    Article  PubMed  CAS  Google Scholar 

  30. Felix IA, Horvath E, Kovacs K et al.: Somatomammotroph adenoma of the pituitary associated with gigantism and hyperprolactinemia. A morphological study including immunoelectron microscopy. Acta Neuropathol. 71: 76–82, 1986.

    Article  PubMed  CAS  Google Scholar 

  31. Beckers A, Courtoy R, Stevenaert A et al.: Somatomammotropes in human pituitary adenomas as revealed by electron microscopic double gold immunostaining method. Acta Endocrino. 118: 503–512, 1988.

    CAS  Google Scholar 

  32. Robert F, Pelletier G, Serri O et al.: Mixed growth hormone and prolactin-secreting human pituitary adenomas: a pathologic, immunocytochemical, ultrastructural, and immunoelectron microscopic study. Hum. Pathol. 19: 1327–1334, 1988.

    Article  PubMed  CAS  Google Scholar 

  33. Reznik M and Hennen G: Somatomammotropes in human pituitary adenomas electron microscopic double gold immunostaining method. Acta Endocrinol. 118: 503–512, 1988.

    PubMed  Google Scholar 

  34. Lloyd RV, Cano M, Chandler WF et al.: Human growth hormone and prolactin secreting pituitary adenomas analyzed by in situ hybridization. Am. J. Pathol. 134: 605–613, 1989.

    PubMed  CAS  Google Scholar 

  35. Ishikawa H, Nogami H, Kamio M et al.: Single secretory granules contain both GH and Prolactin in pituitary mixed type of adenoma. Virchows Arch. 399: 221–226, 1983.

    Article  CAS  Google Scholar 

  36. Mulchahey JJ and Jaffe RB: Detection of a potential progenitor cell in the human fetal pituitary that secretes both growth hormone and prolactin. J. Clin. Endocrinol. Metab. 66: 24–32, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Leong DA, Lau SK, Sinha YN et al.: Enumeration of lactotropes and somatotropes among male and female pituitary cells in culture: evidence in favor of a somatomammotrope subpopulation in the rat. Endocrinology 116: 1371–1378, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Hoeffler JP, Boockfor FR and Frawley LS: Ontogeny of prolactin cells in neonatal rats: initial prolactin secretors also release growth hormone. Endocrinology 117: 187–195, 1985.

    Article  PubMed  CAS  Google Scholar 

  39. Asa SL, Kovacs K, Horvath E et al.: Human fetal adenohypophysis: Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 48: 423–431, 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Chihara K, Iwasaki J, Minamitani N et al.: Effect of vasoactive intestinal polypeptide on growth hormone secretion in perifused acromegalic pituitary adenoma tissues. J. Clin. Endocrino1.Metab. 54: 773–779, 1982.

    Article  CAS  Google Scholar 

  41. Steel JH, Gon G, O’Halloran DJ et al.: Galanin and vasoactive intestinal polypeptide are colocalized with classical pituitary hormones and show plasticity of expression. Histochemistry 93: 183–189, 1989.

    Article  PubMed  CAS  Google Scholar 

  42. Brown ER, Roth KA, Krause JE: Sexually dimorphic distribution of substance P in specific anterior pituitary cell populations. Proc. Natl. Acad. Sci. USA 88: 1222–1226, 1991.

    Article  PubMed  CAS  Google Scholar 

  43. Sako T, Mera F, Shimada T et al.: Glucagon-like material in the human and bovine pituitaries as revealed by immunocytochemistry. Jikeikai Med. J. 36: 21–27, 1989.

    Google Scholar 

  44. Yamamoto T, Katsumata N, Tachibana K et al.: Distribution of a novel peptide in the anterior pituitary, gastric pyloric gland, and pancreatic islets of rat. J. Histochem. Cytochem. 40: 221–229, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Tachibana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tachibana, T., Ito, T. Immunocytochemical study of the GH cells in the anterior pituitary gland of human fetus II. Anencephalic fetus. Hum Cell 16, 205–215 (2003). https://doi.org/10.1111/j.1749-0774.2003.tb00155.x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1749-0774.2003.tb00155.x

Key words

Navigation