Skip to main content

Advertisement

Log in

Biological systems and materials: A review of the field of biomechanics and the role of the society for experimental mechanics

  • Feature
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Conclusions

The field of biological materials and systems is extensive, representing an interdisciplinary topic encompassing mechanics, materials science, and the breadth of engineering disciplines in conjunction with biology and medicine. The biological world has evolved a diverse array of structures and materials that offer unique and desirable properties of significant interest to the engineering world. The local variations in material composition and the intricate hierarchical structures of organic materials result in complicated constitutive responses. Characterizing and understanding these responses impact the field of medicine and provide inspiration for new materials and new areas of study. The unique requirements associated with implants provide opportunities to develop new materials and structures, and employ existing materials to new problems. The membership of the SEM, through the Biological Materials and Systems TD, has embraced the opportunity to take on a central role in developing this new field as evidenced by the many publications referenced here, bringing a strong background of classical mechanics to the investigation of organic materials, the study of implant materials, and the development of new materials and structures based on inspiration from the natural world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SearchPlus, Data obtained from the BIOSIS, Engineering Index, Inspec, ISI Proceedings, ISI Social SciSearch, ISI SciSearch databases using SearchPlus on 13 June 2005.

  2. National Science Foundation, “National Science Board Science and Engineering Infrastructure for the 21st Century: The Role of the National Science Foundation,” National Science Foundation, Arlington, VA (2003). Available at http://www.nsf.gov/nsb/documents/2002/nsb02190/nsb02190.pdf.

  3. Kassner, M.E., Nemat-Nasser, S., Suo, Z., Bao, G., Barbour, J.C., Brinson, L.C., Espinosa, H.D., Gao, H.J., Granick, S., Gumbsch, P., Kim, K.S., Knauss, W., Kubin, L., Langer, J., Larson, B.C., Mahadevan, L., Majumdar, A., Torquato, S., and van Swol, F., “New Directions in Mechanics,” Mechanics of Materials 37:231–259 (2005).

    Article  Google Scholar 

  4. Piehler, H.R., “Future of Medicine: Biomaterials,” MRS Bulletin 25:67–70 (2000).

    Article  Google Scholar 

  5. Brown, E.N., “Interdisciplinary Research: A Student’s Prospective,” Journal of Chemical Education 79:13–15 (2002).

    Article  Google Scholar 

  6. Bruck, H.A., Evans, J.J., and Peterson, M.L., “The Role of Mechanics in Biological and Biologically Inspired Materials,” Experimental Mechanics 42:361–371 (2002).

    Article  Google Scholar 

  7. Brown, E.N., Sottos, N.R., and White, S.R., “Fracture Testing of a Self-Healing Polymer Composite,” Experimental Mechanics 42:372–379 (2002).

    Article  Google Scholar 

  8. Arola, D., Rouland, J., and Zhang, D., “Fatigue and Fracture of Bovine Dentin,” Experimental Mechanics 42:380–388 (2002).

    Article  Google Scholar 

  9. Landis, E.N., Vasic, S., Davids, W.G., and Parrod, P., “Coupled Experiments and Simulations of Microstructural Damage in Wood,” Experimental Mechanics 42:389–394 (2002).

    Article  Google Scholar 

  10. Mayer, G., and Sarikaya, M., “Rigid Biological Composite Materials: Structural Examples for Biomimetic Design,” Experimental Mechanics 42:395–403 (2002).

    Article  Google Scholar 

  11. Yoshioka, Y., and Calvert, P., “Epoxy-based Electroactive Polymer Gels,” Experimental Mechanics 42:404–408 (2002).

    Article  Google Scholar 

  12. Zhang, D., Eggleton, C., and Arola, D., “Evaluating the Mechanical Behavior of Arterial Tissue Using Digital Image Correlation,” Experimental Mechanics 42:409–416 (2002).

    Article  Google Scholar 

  13. Wang, H., and Oster, G., “Energy Transduction in the F1 motor of ATP Synthase,” Nature 398:279–282 (1998).

    Article  Google Scholar 

  14. Wu, G.H., Datar, R.H., Hansen, K.M., Thundat, T., Cote, R.J., and Majumdar, A., “Bioassay of Prostate-specific Antigen (PSA) Using Microcantilevers,” Nature Biotechnology 19:856–860 (2001).

    Article  Google Scholar 

  15. Gao, H.J., Ji, B.H., Jager, I.L., Arzt, E., and Fratzl, P., “Materials Become Insensitive to Flaws at Nanoscale: Lessons from Nature,” Proceedings of the National Academy of Sciences of the United States of America 100:5597–5600 (2003).

    Article  Google Scholar 

  16. Brown, C.U., Kish, V.L. III, Vanscoy, W.M. II, Norman, T.L., and Blaaha, J.D., “Device for Applying Internal Pressure to Cylindrical Specimens [and Application to Orthopedic Implants],” Experimental Techniques 24(4):19–21 (2000).

    Article  Google Scholar 

  17. Ottensmeyer, M.P., “TeMPeST 1-D: An Instrument for Measuring Solid Organ Soft Tissue Properties,” Experimental Techniques 26(3):48–50 (2002).

    Article  Google Scholar 

  18. Spector, A.A., and Jean, R.P., “Elastic Moduli of the Piezoelectric Cochlear Outer Hair Cell Membrane,” Experimental Mechanics 43:355–360 (2003).

    Article  Google Scholar 

  19. Oosterom, R., and Bersee, H.E.N., “Force Controlled Fatigue Testing of Shoulder Prostheses,” Experimental Techniques 28: 5–33 (37).

  20. Farris, D.A., Urquizo, G.C., Beattie, D.K., Woods, T.O., and Berghaus, D.G., “Simplified Accelerometer System for Analysis of Human Gait,” Experimental Techniques 17(1):33–36 (1993).

    Article  Google Scholar 

  21. Gurram, R., Gouw, G.J., and Rakheja, S., “Grip Pressure Distribution under Static and Dynamic Loading,” Experimental Mechanics 33:169–173 (1993).

    Article  Google Scholar 

  22. van der Pijl, A.J., Swieszkowski, W., and Bersee, H.E.N., “Design of a Wear Simulator for In Vitro Shoulder Prostheses Testing,” Experimental Techniques 28(5):45–48 (2004).

    Article  Google Scholar 

  23. Zhang, D., Arola, D.D., and Rouland, J.A., “Evaluating the Elastic Modulus of Bone Using Electronic Speckle Pattern Interferometer,” Experimental Techniques 25:32–34 (2001).

    Article  Google Scholar 

  24. Wood, J.D., Wang, R.Z., Weiner, S., and Pashley, D.H., “Mapping of Tooth Deformation Caused by Moisture Change Using Moire Interferometry,” Dental Materials 19:159–166 (2003).

    Article  Google Scholar 

  25. Trnka, J., Dvorakova, P., and Vesely, E., “Optical Interferometry Methods Used to Study Stress Wave Propagation in a Human Skull,” Experimental Techniques 28(2):29–34 (2004).

    Article  Google Scholar 

  26. Trnka, J., Vesely, E., and Duorakova, R., “A Study of Wave Propagation in a Human Skull Using Laser Interferometry,” Experimental Techniques 28(1):27–30 (2004).

    Article  Google Scholar 

  27. Bay, B.K., Smith, T.S., Fyhrie, D.P., and Saad, M., “Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-ray Tomography,” Experimental Mechanics 39:217–226 (1999).

    Article  Google Scholar 

  28. Tyson, J., Schmidt, T., and Galanulis, K., “Biomechanics Deformation and Strain Measurements with 3D Image Correlation Photogrammetry,” Experimental Techniques 26(5):39–42 (2002).

    Article  Google Scholar 

  29. Guo, D.L., Chen, Y.J., and Liou, N.S., “Strain Distribution of Planar Soft Tissue under Finite Simple Shear Tests,” Proceedings of the Society for Experimental Mechanics, 389–392, The Printing House, Inc., Stoughton, WI (2005).

    Google Scholar 

  30. Peindl, R.D., Harrow, M.E., Connor, P.M., Banks, D.M., D’Alessandro, D.F., “Photoelastic Stress Freezing Analysis of Total Shoulder Replacement Systems,” Experimental Mechanics 44:228–234 (2004).

    Article  Google Scholar 

  31. Cristofolini, L., and Viceconti, M., “Comparison of Uniaxial and Triaxial Rosette Gages for Strain Measurement in the Femur,” Experimental Mechanics 37:350–354 (1997).

    Article  Google Scholar 

  32. Chu, T., “Determination of Peak Stress on Polypropylene Ankle-foot Orthoses Due to Weight Change Using Strain Gage Technology,” Experimental Techniques 24(2):28–30 (2000).

    Article  Google Scholar 

  33. Dias Rodrigues, J.F., Lopes, H., de Melo, F.Q., and Simoes, J.A., “Experimental Modal Analysis of a Synthetic Composite Femur,” Experimental Mechanics 44:29–32 (2004).

    Article  Google Scholar 

  34. Grande-Allen, K.J., Cochran, R.P., Reinhall, P.G., and Kunzelman, K.S., “Mechanisms of Aortic Valve Incompetence: Finite-element Modeling of Marfan Syndrome,” Journal of Thoracic and Cardiovascular Surgery 122:946–954 (2001).

    Article  Google Scholar 

  35. Grande, K.J., “The Aortic Root-Aortic Valve Relationship in the Normal, Diseased, and Surgically Repaired States,” PhD Dissertation, University of Washington, Seattle (1998).

    Google Scholar 

  36. Beason, D.P., Dakin, G.J., Lopez, R.R., Alonso, J.E., Bandak, F.A., and Eberhardt, A.W., “Bone Mineral Density Correlates with Fracture Load in Experimental Side Impacts of the Pelvis,” Journal of Biomechanics 36:219–227 (2003).

    Article  Google Scholar 

  37. Nalla, R.K., Kruzic, J.J., Kinney, J.H., and Ritchie, R.O., “Mechanistic Aspects of Fracture and R-curve Behavior in Human Cortical Bone,” Biomaterials 26:217–231 (2005).

    Article  Google Scholar 

  38. Toms, S.R., Dakin, G.J., Lemons, J.E., and Eberhardt, A.W., “Quasi-linear Viscoelastic Behavior of the Human Periodontal Ligament,” Journal of Biomechanics 35:1411–1415 (2002).

    Article  Google Scholar 

  39. Roy, R., Kohles, S.S., Zaporojan, V., Peretti, G.M., Randolph, M.A., Xu, J.W., and Bonassar, L.J., “Analysis of Bending Behavior of Native and Engineered Auricular and Costal Cartilage,” Journal of Biomedical Materials Research 68A:597–602 (2004).

    Article  Google Scholar 

  40. Kohles, S.S., “Applications of an Anisotropic Parameter to Cortical Bone,” Journal of Materials Science: Materials in Medicine 11:261–265 (2000).

    Google Scholar 

  41. Swadener, J.G., Rho, J.Y., and Pharr, G.M., “Effects of Anisotropy on Elastic Moduli Measured by Nanoindentation in Human Tibial Cortical Bone,” Journal of Biomedical Materials Research 57:108–112 (2001).

    Article  Google Scholar 

  42. Fan, Z., Swadener, J.G., Rho, J.Y., Roy, M.E., and Pharr, G.M., “Anisotropic Properties of Human Tibial Cortical Bone as Measured by Nanoindentation,” Journal of Orthopaedic Research 20:806–810 (2002).

    Article  Google Scholar 

  43. Redondo, A., and LeSar, R., “Modeling and Simulation of Biomaterials,” Annual Review of Materials Research 34:279–314 (2004).

    Article  Google Scholar 

  44. Ching, R., Nuckley, D., Hertsted, S., Eck, M., Mann, F., and Sun, E., “Tensile Mechanics of the Developing Cervical Spine,” Stapp Car Crash Journal 45:329–336 (2001).

    Google Scholar 

  45. Nuckley, D.J., Hertsted, S., Ku, G., Eck, M., and Ching, R., “Compressive Tolerance of the Maturing Cervical Spine,” Stapp Car Crash Journal 46:431–440 (2002).

    Google Scholar 

  46. Nuckley, D.J., Van Nausdle, J.A., Raynak, G.C., Eck, M.P., Perry, C.E., Harrington, R.M., and Ching, R.P., “Examining the Relationship between Whiplash Kinematics and a Direct Neurologic Injury Mechanism,” International Journal of Vehicle Design 32:68–83 (2003).

    Article  Google Scholar 

  47. Nuckley, D.J., Eck, M.P., Carter, J.W., and Ching, R.P., “Spinal Maturation Affects Vertebral Compressive Mechanics and vBMD with Sex Dependence,” Bone (New York) 35:720–728 (2004).

    Google Scholar 

  48. Reiser, R.F., Broker, J.P., and Peterson, M.L., “Knee Loads in the Standard and Recumbent Cycling Positions,” Proceedings of the International ISA Biomedical Sciences Instrumentation Symposium 449:36–42 (2004).

    Google Scholar 

  49. Kalath, S., Tsipouras, P., Silver, F.H., “Increased Aortic Root Stiffness Associated with Osteogenesis Imperfecta,” Annals of Biomedical Engineering 15:91–99 (1987).

    Article  Google Scholar 

  50. Nuckley, D.J., Yliniemi, E.M., Cohen, A.M., Harrington, R.M., and Ching, R.P., Compressive Mechanics of the Human Developing Spine, International Society for Biomechanics Meeting, Cleveland, Ohio (2005).

    Google Scholar 

  51. Peterson, M.L., Reiser, R.F. II, and McIlwraith, C.W., “Dynamic Response of Racetrack Surfaces,” in Proceedings of the Society for Experimental Mechanics, 13–18, The Printing House, Inc., Stoughton, WI (2005).

    Google Scholar 

  52. Totora, G.J., and Grabowski, S.R., Principles of Anatomy and Physiology, 10th Edition, John Wiley & Sons Inc., NewYork (2002).

    Google Scholar 

  53. Borel, J.P., and Monboisse, J.C., “Collagens: Why Such a Complicated Structure?” Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales 187:124–142 (1993).

    Google Scholar 

  54. Black, J., Orthopedic Biomaterials in Research and Practice, Churchill Livingstone, New York (1988).

    Google Scholar 

  55. Bornstein, P., “Covalent Cross-links in Collagen: A Personal Account of Their Discovery,” Matrix Biology 22:385–391 (2003).

    Article  Google Scholar 

  56. Hellmich, C., Barthelemy, J.F., and Dormieux, L., “Mineral-collagen Interactions in Elasticity of Bone Ultrastructure—A Continuum Micromechanics Approach,” European Journal of Mechanics, A/Solids 23:783–810 (2004a).

    Article  Google Scholar 

  57. Hellmich, C., Barthelemy, J.F., and Dormieux, L., “Bone Ultrastructure—Collagen-reinforced Mineral Matrix or Interpenetrating Network of Hydroxyapatite Crystals and Collagen Molecules?” Proceedings of the IASTED International Conference on Biomedical Engineering, 31–34, Acta Press, Calgary, Canada (2004b).

  58. Hernandez, C.J., Majeska, R.J., and Schaffler, M.B., “Osteocyte Density in Woven Bone,” Bone (New York) 35:1095–1099 (2004).

    Google Scholar 

  59. Jakob, H.F., Fratzl, P., and Tschegg, S.E., “Size and Arrangement of Elementary Cellulose Fibrils in Wood Cells: A Small-angle X-ray Scattering Study of Picea abies,” Journal of Structural Biology 113:13–22 (1994).

    Article  Google Scholar 

  60. Kilpelainen, A., Peltola, H., Ryyppo, A., Sauvala, K., Laitinen, K., and Kellomaki, S., “Wood Properties of Scots Pines (Pinus sylvestris) Grown at Elevated Temperature and Carbon Dioxide Concentration,” Tree Physiology 23:889–897 (2003).

    Article  Google Scholar 

  61. Hou, W.T., and Feng, Q.L., “Crystal Orientation Preference and Formation Mechanism of Nacreous Layer in Mussel,” Journal of Crystal Growth 258:402–408 (2003).

    Article  Google Scholar 

  62. Lin, A., and Meyers, M.A., “Growth and Structure in Abalone Shell,” Materials Science and Engineering A 390:27–41 (2005).

    Article  Google Scholar 

  63. Hou, D.F., Zhou, G.S., and Zheng, M., “Conch Shell Structure and Its Effect on Mechanical Behaviors,” Biomaterials 25:751–756 (2005).

    Article  Google Scholar 

  64. Song, F., and Bai, Y.L., “Effects of Nanostructures on the Fracture Strength of the Interfaces in Nacre,” Journal of Materials Research 18:1741–1744 (2003).

    Article  Google Scholar 

  65. Rehart, S., and Kerschbaumer, F., “Endoprostheses of the Hand,” Orthopade 32:779–783 (2003).

    Article  Google Scholar 

  66. Williams, D.F., “Corrosion of Implant Materials,” Annual Review of Materials Science 6:237–266 (1976).

    Article  Google Scholar 

  67. Pruitt, L.A., “Deformation, Yielding, Fracture and Fatigue Behavior of Conventional and Highly Cross-linked Ultra High Molecular Weight Polyethylene,” Biomaterials 26:905–915 (2005).

    Article  Google Scholar 

  68. Messner, K., and Gillquist, J., “Synthetic Implants for the Repair of Osteochondral Defects of the Medial Femoral Condyle: A Biomechanical and Histological Evaluation in the Rabbit Knee,” Biomaterials 14:513–521 (1993).

    Article  Google Scholar 

  69. Wolford, L.M., “Temporomandibular Joint Devices: Treatment Factors and Outcomes,” Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics 83:143–149 (1997).

    Article  Google Scholar 

  70. Mercuri, L.G., and Giobbie-Hurder, A., “Long-term Outcomes after Total Alloplastic Temporomandibular Joint Reconstruction Following Exposure to Failed Materials,” Journal of Oral and Maxillofacial Surgery 62:1088–1096 (2004).

    Article  Google Scholar 

  71. Geyer, G., “Materials for Middle Ear Reconstruction,” HNO 47:77–91 (1999).

    Article  Google Scholar 

  72. Neumann, A., and Jahnke, K., “Biomaterials for Ossicular Chain Reconstruction. A Review,” Materialwissenschaft und Werkstofftechnik 34:1052–1057 (2003).

    Article  Google Scholar 

  73. Zenner, H.P., Freitag, H.G., Linti, C., Steinhardt, U., Jorge, J.R., Preyer, S., Mauz, P.S., Surth, M., Planck, H., Baumann, I., Lehner, R., and Eiber, A., “Acoustomechanical Properties of Open TTP(R) Titanium Middle Ear Prostheses,” Hearing Research 192:36–46 (2004).

    Article  Google Scholar 

  74. Kontio, R., Suuronen, R., Salonen, O., Paukku, P., Konttinen, Y.T., and Lindqvist, C., “Effectiveness of Operative Treatment of Internal Orbital Wall Fracture with Polydioxanone Implant,” Journal of Oral and Maxillofacial Surgery 30:278–285 (2001).

    Article  Google Scholar 

  75. Ellis, E. III, and Messo, E., “Use of Nonresorbable Alloplastic Implants for Internal Orbital Reconstruction,” Journal of Oral and Maxillofacial Surgery 62:873–881 (2004).

    Article  Google Scholar 

  76. Brown, E.N., and Dattelbaum, D.M., “The Role of Crystalline Phase on Fracture and Microstructure Evolution of Polytetrafluoroethylene (PTFE),” Polymer 46:3056–3068 (2005).

    Article  Google Scholar 

  77. Brown, E.N., Rae, P.J., Orler, E.B., Gray, G.T. III, and Dattelbaum, D.M., “The Effect of Crystallinity on the Fracture of Polytetrafluoroethylene (PTFE),” Materials Science and Engineering C, in press.

  78. Qi, G., Li, J.H., Mann, K.A., Mouchon, W.P., Hamstad, M.A., Salehi, A., and Whitten, S.A., “3D Real Time Methodology Monitoring Cement Failures in THA,” Journal of Biomedical Materials Research 71A:391–402 (2004).

    Article  Google Scholar 

  79. Kotha, S.P., Li, C., Schmid, S.R., and Mason, J.J., “Fracture Toughness of Steel-fiber-reinforced Bone Cement,” Journal of Biomedical Materials Research 70A:514–521 (2004).

    Article  Google Scholar 

  80. Mann, K.A., Gupta, S., Race, A., Miller, M.A., and Cleary, R.J., “Application of Circular Statistics in the Study of Crack Distribution around Cemented Femoral Components,” Journal of Biomechanics 36:1231–1234 (2003).

    Article  Google Scholar 

  81. Ryu, H.S., Hong, K.S., Lee, J.K., Kim, D.J., Lee, J.H., Chang, B.S., Lee, D.H., Lee, C.K., and Chung, S.S., “Magnesia-doped HA/beta-TCP Ceramics and Evaluation of Their Biocompatibility,” Biomaterials 25:393–401 (2004).

    Article  Google Scholar 

  82. Robertson, S.W., Imbeni, V., Wenk, H.R., and Ritchie, R.O., “Crystallographic Texture for Tube and Plate of the Superelastic/Shape-memory Alloy Nitinol Used for Endovascular Stents,” Journal of Biomedical Materials Research A 72:190–199 (2005).

    Article  Google Scholar 

  83. Perry, K.E., and Kugler, C., “Non-zero Mean Fatigue Testing of NiTi,” Experimental Techniques 26(1):37–38 (2002).

    Article  Google Scholar 

  84. Duda, S.H., Pusich, B., Richter, G., Landwehr, P., Oliva, V.L., Tielbeek, A., Wiesinger, B., Hak, J.B., Tielemans, H., Ziemer, G., Cristea, E., Lansky, A., and Beregi, J.P., “Sirolimus-eluting Stents for the Treatment of Obstructive Superficial Femoral Artery Disease,” Circulation 106:1505–1509 (2002).

    Article  Google Scholar 

  85. Perry, K.E., Labossiere, P.E., and Steffler, E., “Thermoelastic Transformation Behavior of Nitinol,” Medical Devices and Materials, ASTM-STP 1481, ASTM International, West Conshohocken, PA (2005).

  86. Gotzen, N., Cross, A.R., Ifju, P.G., and Rapoff, A.J., “Understanding Stress Concentration about a Nutrient Foramen,” Journal of Biomechanics 36:1511–1521 (2003).

    Article  Google Scholar 

  87. Xu, L.R., Kuai, H., and Sengupta, S., “Dissimilar Material Joints with and without Free-edge Stress Singularities: Part I. A Biologically Inspired Design,” Experimental Mechanics 44:608–615 (2004).

    Article  Google Scholar 

  88. Xu, L.R., and Sengupta, S., “Dissimilar Material Joints with and without Free-edge Stress Singularities: Part II. An Integrated Numerical Analysis,” Experimental Mechanics 44:616–621 (2004).

    Article  Google Scholar 

  89. Bruck, H.A., Fowler, G., Gupta, S.K., and Valentine, T., “Using Geometric Complexity to Enhance the Interfacial Strength of Heterogeneous Structures Fabricated in a Multi-stage, Multi-piece Molding Process,” Experimental Mechanics 44:261–271 (2004).

    Article  Google Scholar 

  90. Mattheck, C., Design in Nature: Learning from Trees, Springer-Verlag, New York (1998).

    Book  Google Scholar 

  91. Gyger, L.S. Jr., Kulkarni, P., Bruck, H.A., Gupta, S.K., and Wilson, O.C., “Porous Gelcast Ceramics for Bone Repair Implants,” in Proceedings of the Society for Experimental Mechanics, 251–257, The Printing House, Inc., Stoughton, WI (2005).

    Google Scholar 

  92. Radford, D.W., Van Goethem, D., Gutkowski, R.M., and Peterson, M.L., “Composite Repair of Timber Structures,” Construction and Building Materials 16:417–425 (2002).

    Article  Google Scholar 

  93. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., and Viswanathan, S., “Autonomic Healing of Polymer Composites,” Nature 409:794–797 (2001).

    Article  Google Scholar 

  94. Chen, X.X., Dam, M.A., Ono, K., Mal, A., Shen, H.B., Nutt, S.R., Sheran, K., and Wudl, F., “A Thermally Re-mendable Cross-linked Polymeric Material,” Science 295:1698–1702 (2002).

    Article  Google Scholar 

  95. Brown, E.N., Kessler, M.R., Sottos, N.R., and White, S.R., “In situ Poly(Urea-formaldehyde) Microencapsulation of Dicyclopentadiene,” Journal of Microencapsulation 20:719–730 (2003).

    Article  Google Scholar 

  96. Brown, E.N., White, S.R., and Sottos, N.R., “Microcapsule Induced Toughening in a Self-healing Polymer Composite,” Journal of Materials Science 39:1703–1710 (2004).

    Article  Google Scholar 

  97. Rule, J.D., Brown, E.N., Sottos, N.R., White, S.R., and Moore, J.S., “Wax-protected Catalyst Microspheres for Efficient Self-healing Materials,” Advanced Materials 17:205–208 (2005).

    Article  Google Scholar 

  98. Brown, E.N., “Fracture and Fatigue of a Self-healing Polymer Composite Material,” PhD Dissertation, University of Illinois Urbana-Champaign, Urbana (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, E.N., Peterson, M.L. & Grande-Allen, K.J. Biological systems and materials: A review of the field of biomechanics and the role of the society for experimental mechanics. Exp Tech 30, 21–29 (2006). https://doi.org/10.1111/j.1747-1567.2006.00023.x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1747-1567.2006.00023.x

Navigation