Skip to main content
Log in

Role of oocyte-specific genes in the development of mammalian embryos

  • Review Article
  • Embryogenesis
  • Published:
Reproductive Medicine and Biology

Abstract

Studies on oocyte-specific genes are important in understanding the genetic pathways essential for folliculogenesis, oogenesis and early embryogenesis. Although the molecular mechanisms regulating oocyte growth and embryo development in mammals have partially been unraveled by gene knockout studies, many aspects concerning reproduction remain to be determined. Development of mammalian embryos starts with the fusion of sperm and egg. After fertilization, the first major developmental transition, maternal to zygotic transition, occurs at the specific stages of preimplantation development in each mammal. The transition is called zygotic gene activation (ZGA) or embryonic genome activation. The ZGA is one of the most important events that occur during preimplantation development; however, the mechanism of the event remains unknown. Because the development until the transition is maintained by maternally inherited proteins and transcripts stored in the oocytes, it is highly likely that these products play an important role in the initiation of ZGA. Several maternal-effects genes that are specifically expressed in oocytes have been identified and their involvement in preimplantation development has been revealed. Therefore, to study oocyte-specific gene regulation would help not only to understand the precise mechanisms of mammalian development, but also to show the mechanisms of reproductive disorders, such as premature ovarian failure and infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammond J. Recovery and culture of tubal mouse ova. Nature 1949; 163: 28–29.

    Article  PubMed  Google Scholar 

  2. Kaufman MH, Sachs L. Complete preimplantation development in culture of parthenogenetic mouse embryos. J Embryol Exp Morph 1976; 35: 179–190.

    PubMed  CAS  Google Scholar 

  3. Goddard MJ, Pratt HP. Control of events during early cleavage of the mouse embryo: an analysis of the ‘two-cell block’. J Embryol Exp Morph 1983; 73: 111–133.

    PubMed  CAS  Google Scholar 

  4. Whitten WK, Biggers JD. Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J Reprod Fertil 1968; 17: 399–401.

    PubMed  CAS  Google Scholar 

  5. Muggleton-Harris A, Whittingham DG, Wilson L. Cytoplasmic control of preimplantation development in vitro in the mouse. Nature 1982; 299: 460–462.

    Article  PubMed  CAS  Google Scholar 

  6. Abramczuk J, Solter D, Koprowski H. The beneficial effect EDTA on development of mouse one-cell embryos in chemically defined medium. Dev Biol 1977; 61: 378–383.

    Article  PubMed  CAS  Google Scholar 

  7. Chatot CL, Ziomek CA, Bavister BD, Lewis JL, Torres I. An improved culture medium supports development of random-bred one-cell mouse embryos in vitro. J Reprod Fertil 1989; 86: 679–688.

    PubMed  CAS  Google Scholar 

  8. Haraguchi S, Naito K, Sato E. Phosphate exposure during the late one-cell and early two-cell stages induces a time-specific decrease in cyclin B and cdc25B mRNAs in AKR/N mouse embryos in vitro. Zygote 1999; 7: 87–93.

    Article  PubMed  CAS  Google Scholar 

  9. Biggers JD, Gwatkin RLB, Brinster RL. Development of mouse embryos in organ culture of fallopian tubes on a chemically defined medium. Nature 1962; 194: 747–749.

    Article  PubMed  CAS  Google Scholar 

  10. Minami N, Bavister BD, Iritani A. Development of hamster two-cell embryos in the isolated mouse oviduct in organ culture system. Gamete Res 1988; 19: 235–240.

    Article  PubMed  CAS  Google Scholar 

  11. Bellier S, Chastant S, Adenot P, Vincent M, Renard JP, Bensaude O. Nuclear translocation and carboxyl-terminal domain phosphorylation of RNA polymerase II delineate the two phases of zygotic gene activation in mammalian embryos. EMBO J 1997; 16: 6250–6262.

    Article  PubMed  CAS  Google Scholar 

  12. Latham KE, Solter D, Schultz RM. Acquisition of a transcriptionally permissive state during the one-cell stage of mouse embryogenesis. Dev Biol 1992; 149: 457–462.

    Article  PubMed  CAS  Google Scholar 

  13. Matsumoto K, Anzai M, Nakagata N, Takahashi A, Takahashi Y, Miyata K. Onset of paternal gene activation in early mouse embryos fertilized with transgenic mouse sperm. Mol Reprod Dev 1994; 39: 136–140.

    Article  PubMed  CAS  Google Scholar 

  14. Ram PT, Schultz RM. Reporter gene expression in G2 of the one-cell mouse embryo. Dev Biol 1993; 156: 552–556.

    Article  PubMed  CAS  Google Scholar 

  15. Temeles GL, Ram PT, Rothstein JL, Schultz RM. Expression patterns of novel genes during mouse preimplantation embryogenesis. Mol Reprod Dev 1994; 37: 121–129.

    Article  PubMed  CAS  Google Scholar 

  16. Bouniol C, Nguyen E, Debey P. Endogenous transcription occurs at the one-cell stage in the mouse embryo. Exp Cell Res 1995; 218: 57–62.

    Article  PubMed  CAS  Google Scholar 

  17. Christians E, Campion E, Thompson EM, Renard JP. Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development 1995; 121: 113–122.

    PubMed  CAS  Google Scholar 

  18. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 1997; 181: 296–307.

    Article  PubMed  CAS  Google Scholar 

  19. Flach G, Johnson MH, Braude PR, Taylor RA, Bolton VN. The transition from maternal to embryonic control in the two-cell mouse embryo. EMBO J 1982; 1: 681–686.

    PubMed  CAS  Google Scholar 

  20. Latham KE, Solter D, Schultz RM. Activation of a two-cell stage-specific gene following transfer of heterologous nuclei into enucleated mouse embryos. Mol Reprod Dev 1991; 30: 182–186.

    Article  PubMed  CAS  Google Scholar 

  21. Bensaude O, Babinet C, Morange M, Jacob F. Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 1983; 305: 331–333.

    Article  PubMed  CAS  Google Scholar 

  22. Conover JC, Temeles GL, Zimmermann JW, Burke B, Schultz RM. Stage-specific expression of a family of proteins that are major products of zygotic gene activation in the mouse embryo. Dev Biol 1991; 144: 392–404.

    Article  PubMed  CAS  Google Scholar 

  23. Davis WJ, De Sousa PA, Schultz RM. Transient expression of translation initiation factor eIF-4C during the two-cell stage of the preimplantation mouse embryo: identification by mRNA differential display and the role of DNA replication in zygotic gene activation. Dev Biol 1996; 174: 190–201.

    Article  PubMed  CAS  Google Scholar 

  24. Latham KE, Rambhatla L, Hayashizaki Y, Chapman VM. Stage-specific induction and regulation by genomic imprinting of the mouse U2afbp-rs gene during preimplantation development. Dev Biol 1995; 168: 670–676.

    Article  PubMed  CAS  Google Scholar 

  25. Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays 1993; 15: 531–538.

    Article  PubMed  CAS  Google Scholar 

  26. Majumder S, DePamphilis ML. A unique role for enhancers is revealed during early mouse development. Bioessays 1995; 17: 879–889.

    Article  PubMed  CAS  Google Scholar 

  27. Nothias JY, Majumder S, Kaneko KJ, DePamphilis ML. Regulation of gene expression at the beginning of mammalian development. J Biol Chem 1995; 270: 22077–22080.

    Article  PubMed  CAS  Google Scholar 

  28. Henery CC, Miranda M, Wiekowski M, Wilmut I, DePamphilis ML. Repression of gene expression at the beginning of mouse development. Dev Biol 1995; 169: 448–460.

    Article  PubMed  CAS  Google Scholar 

  29. Hamatani T, Carter MG, Sharov AA, Ko MS. Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 2004; 6: 117–131.

    Article  PubMed  CAS  Google Scholar 

  30. Howlett SK, Webb M, Maro B, Johnson MH. Meiosis II, mitosis I and the linking interphase: a study of the cytoskeleton in the fertilised mouse egg. Cytobios 1985; 43: 295–305.

    PubMed  CAS  Google Scholar 

  31. Taylor KD, Piko L. Patterns of mRNA prevalence and expression of B1 and B2 transcripts in early mouse embryos. Development 1987; 101: 877–892.

    PubMed  CAS  Google Scholar 

  32. Latham KE, Garrels JI, Chang C, Solter D. Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one and two-cell stages. Development 1991; 112: 921–932.

    PubMed  CAS  Google Scholar 

  33. Telford NA Watson AJ, Schultz GA. Transition from maternal to embryonic control in early mammalian development: a comparison of several species. Mol Reprod Dev 1990; 26: 90–100.

    Article  PubMed  CAS  Google Scholar 

  34. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002; 296: 2178–2180.

    Article  PubMed  CAS  Google Scholar 

  35. Dong J, Albertini DF, Nishimori K, Kumar TR, Lu N, Matzuk MM. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996; 383: 531–535.

    Article  PubMed  CAS  Google Scholar 

  36. Matzuk MM. Revelations of ovarian follicle biology from gene knockout mice. Mol Cell Endocrinol 2000; 163: 61–66.

    Article  PubMed  CAS  Google Scholar 

  37. Carabatsos MJ, Elvin J, Matzuk MM, Albertini DF. Characterization of oocyte and follicle development in growth differentiation factor-9-deficient mice. Dev Biol 1998; 204: 373–384.

    Article  PubMed  CAS  Google Scholar 

  38. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol 1995; 9: 131–136.

    Article  PubMed  CAS  Google Scholar 

  39. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol 1998; 12: 1809–1817.

    Article  PubMed  CAS  Google Scholar 

  40. Smith P, O Ws, Corrigan KA et al. Ovarian morphology and endocrine characteristics of female sheep fetuses that are heterozygous or homozygous for the inverdale prolificacy gene (fecX1). Biol Reprod 1997; 57: 1183–1192.

    Article  PubMed  CAS  Google Scholar 

  41. Braw-Tal R, McNatty KP, Smith P et al. Ovaries of ewes homozygous for the X-linked Inverdale gene (FecXI) are devoid of secondary and tertiary follicles but contain many abnormal structures. Biol Reprod 1993; 49: 895–907.

    Article  PubMed  CAS  Google Scholar 

  42. Yan C, Wang P, DeMayo J et al. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol 2001; 15: 854–866.

    Article  PubMed  CAS  Google Scholar 

  43. Lyons KM, Pelton RW, Hogan BL. Patterns of expression of murine Vgr-1 and BMP-2a RNA suggest that transforming growth factor-beta-like genes coordinately regulate aspects of embryonic development. Genes Dev 1989; 3: 1657–1668.

    Article  PubMed  CAS  Google Scholar 

  44. Schmid P, Cox D, van_der_Putten H, McMaster GK, Bilbe G. Expression of TGF-beta s and TGF-beta type II receptor mRNAs in mouse folliculogenesis: stored maternal TGF-beta 2 message in oocytes. Biochem Biophys Res Commun 1994; 201: 649–656.

    Article  PubMed  CAS  Google Scholar 

  45. Valve E, Penttila TL, Paranko J, Harkonen P. FGF-8 is expressed during specific phases of rodent oocyte and spermatogonium development. Biochem Biophys Res Commun 1997; 232: 173–177.

    Article  PubMed  CAS  Google Scholar 

  46. Carabatsos MJ, Sellitto C, Goodenough DA, Albertini DF. Oocyte-granulosa cell heterologous gap junctions are required for the coordination of nuclear and cytoplasmic meiotic competence. Dev Biol 2000; 226: 167–179.

    Article  PubMed  CAS  Google Scholar 

  47. Eppig JJ, Wigglesworth K, Pendola FL. The mammalian oocyte orchestrates the rate of ovarian follicular development. Proc Natl Acad Sci USA 2002; 99: 2890–2894.

    Article  PubMed  CAS  Google Scholar 

  48. Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factor required for ovarian follicle formation. Development 2000; 127: 4645–4654.

    PubMed  CAS  Google Scholar 

  49. Epifano O, Liang LF, Familari M, Moos MC, Dean J. Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development 1995; 121: 1947–1956.

    PubMed  CAS  Google Scholar 

  50. Liang L, Soyal SM, Dean J. FIGalpha, a germ cell specific transcription factor involved in the coordinate expression of the zona pellucida genes. Development 1997; 124: 4939–4947.

    PubMed  CAS  Google Scholar 

  51. Newport J, Kirschner M. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 1982; 30: 675–686.

    Article  PubMed  CAS  Google Scholar 

  52. Morisato D, Anderson KV. Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 1995; 29: 371–399.

    Article  PubMed  CAS  Google Scholar 

  53. Dean J. Oocyte-specific genes regulate follicle formation, fertility and early mouse development. J Reprod Immunol 2002; 53: 171–180.

    Article  PubMed  CAS  Google Scholar 

  54. Burns KH, Viveiros MM, Ren Y et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 2003; 300: 633–636.

    Article  PubMed  CAS  Google Scholar 

  55. Christians E, Davis AA, Thomas SD, Benjamin IJ. Maternal-effect of Hsf1 on reproductive success. Nature 2000; 407: 693–694.

    Article  PubMed  CAS  Google Scholar 

  56. Gurtu VE, Verma S, Grossmann AH, Liskay RM, Skarnes WC, Baker SM. Maternal-effect for DNA mismatch repair in the mouse. Genetics 2002; 160: 271–277.

    PubMed  CAS  Google Scholar 

  57. Howell CY, Bestor TH, Ding F et al. Genomic imprinting disrupted by a maternal-effect mutation in the Dnmt1 gene. Cell 2001; 104: 829–838.

    Article  PubMed  CAS  Google Scholar 

  58. Payer B, Saitou M, Barton SC et al. Stella is a maternal-effect gene required for normal early development in mice. Curr Biol 2003; 13: 2110–2117.

    Article  PubMed  CAS  Google Scholar 

  59. Ramos SB, Stumpo DJ, Kennington EA et al. The CCCH tandem zinc-finger protein Zfp3612 is crucial for female fertility and early embryonic development. Development 2004; 131: 4883–4893.

    Article  PubMed  CAS  Google Scholar 

  60. Tong ZB, Gold L, Pfeifer KE et al. Mater, a maternal-effect gene required for early embryonic development in mice. Nat Genet 2000; 26: 267–268.

    Article  PubMed  CAS  Google Scholar 

  61. Wu X Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM. Zygote arrest 1 (Zarl) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 2003; 33: 187–191.

    Article  PubMed  CAS  Google Scholar 

  62. Tong ZB, Nelson LM. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 1999; 140: 3720–3726.

    Article  PubMed  CAS  Google Scholar 

  63. Mertineit C, Yoder JA, Taketo T, Laird DW, Trasler JM, Bestor TH. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 1998; 125: 889–897.

    PubMed  CAS  Google Scholar 

  64. Xu Z, Kopf GS, Schultz RM. Involvement of inositol 1,4,5-trisphosphate-mediated Ca2+ release in early and late events of mouse egg activation. Development 1994; 120: 1851–1859.

    PubMed  CAS  Google Scholar 

  65. Lai WS, Carballo E, Thorn JM, Kennington EA Blackshear PJ. Interactions of CCCH zinc finger proteins with mRNA. Binding of tristetraprolin-related zinc finger proteins to Au-rich elements and destabilization of mRNA. J Biol Chem 2000; 275: 17827–17837.

    Article  PubMed  CAS  Google Scholar 

  66. Yan W, Rajkovic A, Viveiros MM, Burns KH, Eppig JJ, Matzuk MM. Identification of Gasz, an Evolutionarily Conserved Gene Expressed Exclusively in Germ Cells and Encoding a Protein with Four Ankyrin Repeats, a Sterile-alpha Motif, and a Basic Leucine Zipper. Mol Endocrinol 2002; 16: 1168–1184.

    Article  PubMed  CAS  Google Scholar 

  67. Yan W, Ma L, Zilinski CA, Matzuk MM. Identification and characterization of evolutionarily conserved pufferfish, zebrafish, and frog orthologs of GASZ. Biol Reprod 2004; 70: 1619–1625.

    Article  PubMed  CAS  Google Scholar 

  68. Suzumori N, Yan C, Matzuk MM, Rajkovic A. Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev 2002; 111: 137–141.

    Article  PubMed  CAS  Google Scholar 

  69. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 2004; 305: 1157–1159.

    Article  PubMed  CAS  Google Scholar 

  70. Minami N, Sasaki K, Aizawa A, Miyamoto M, Imai H. Analysis of gene expression in mouse two-cell embryos using fluorescein differential display: comparison of culture environments. Biol Reprod 2001; 64: 30–35.

    Article  PubMed  CAS  Google Scholar 

  71. Minami N, Aizawa A, Ihara R, Miyamoto M, Ohashi A, Imai H. Oogenesin is a novel mouse protein expressed in oocytes and early cleavage-stage embryos. Biol Reprod 2003; 69: 1736–1742.

    Article  PubMed  CAS  Google Scholar 

  72. Dade S, Callebaut I, Mermillod P, Monget P. Identification of a new expanding family of genes characterized by atypical LRR domains. Localization of a cluster preferentially expressed in oocyte. FEES Lett 2003; 555: 533–538.

    Article  CAS  Google Scholar 

  73. Tsukamoto S, Ihara R, Aizawa A et al. Oog1, an oocyte-specific protein, interacts with Ras and Ras-signaling proteins during early embryogenesis. Biochem Biophys Res Commun 2006; 343: 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  74. Albright CF, Giddings BW, Liu J, Vito M, Weinberg RA. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J 1993; 12: 339–347.

    PubMed  CAS  Google Scholar 

  75. Kikuchi A, Demo SD, Ye ZH, Chen YW, Williams LT. RalGDS family members interact with the effector loop of ras p21. Mol Cell Biol 1994; 14: 7483–7491.

    PubMed  CAS  Google Scholar 

  76. Haberland J, Gerke V. Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation. Biochem J 1999; 343 Part 3: 653–662.

    Article  PubMed  CAS  Google Scholar 

  77. Dade S, Callebaut I, Paillisson A, Bontoux M, Dalbies-Tran R, Monget P. In silico identification and structural features of six new genes similar to MATER specifically expressed in the oocyte. Biochem Biophys Res Commun 2004; 324: 547–553.

    Article  PubMed  CAS  Google Scholar 

  78. Paillisson A, Dade S, Callebaut I et al. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome. BMC Genomics 2005; 6: 76.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naojiro Minami.

About this article

Cite this article

Minami, N., Tsukamoto, S. Role of oocyte-specific genes in the development of mammalian embryos. Reprod Med Biol 5, 175–182 (2006). https://doi.org/10.1111/j.1447-0578.2006.00139.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1447-0578.2006.00139.x

Key words

Navigation