Skip to main content
Log in

Comparison of visual acuity and visual axis of three flatfish species with different ecotypes

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The visual acuity, visual axis and visual accommodation of pointhead flounder, slime flounder, and red halibut were determined to obtain basic knowledge for developing appropriate fishing gear and fishing methods for sustainable fisheries. Each of these species has a different ecotype in terms of habitat, depth and prey species. Thus, it was hypothesized that they may differ in terms of visual acuity, visual axis and visual accommodation. Few studies have compared these characters in flatfishes from different ecotypes. We used histological methods to determine visual acuity (i.e. cone cell density) and visual axis (i.e. cone cell distribution) in each of these species. The maximum visual acuity was 0.127 in pointhead flounder (total length, TL 344 mm), 0.092 in slime flounder (TL 372 mm) and 0.109 in red halibut (TL 336 mm). Based on the cone cell distribution in the retina, the visual axis was upward and forward in pointhead flounder, forward and downward in slime flounder, and downward in red halibut. Finally, the mean angle of lens movement was −2° in pointhead flounder, −13° in slime flounder and −32° in red halibut. This measurement of lens movement indicated that the average near-point distance was 0.87× TL in pointhead flounder, 0.65 × TL in slime flounder and 1.02 × TL in red halibut. At similar TL (336–355 mm), the visual acuity of these species differs depending on the direction in which they are looking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watanabe T. The fisheries research of important fish — pointhead flounder. Bull. Jpn. Sea Reg. Fish. Res. Lab. 1956; 4: 249–269 (in Japanese).

    Google Scholar 

  2. Mikawa M. Studies on the digestive system and feeding habit of bottom fishes in the North-Eastern Sea area along the Pacific coast of Japan. Bull. Tohoku Reg. Fish. Res. Lab. 1953; 26: 26–36.

    Google Scholar 

  3. Yagishita N, Yamasaki A, Tanaka E. Age and growth of flathead flounder Hippoglossoides dubius collected off Kyoto Prefecture, Japan. Nippon Suisan Gakkaishi 2006; 72: 651–658.

    Article  Google Scholar 

  4. Kitagawa D, Katayama S, Fujiwara K. Distribution and growth of flathead flounder Hippoglossoides dubius, off Tohoku area. Bull. Jpn. Soc. Fish. Oceanogr. 2004; 68: 151–157.

    Google Scholar 

  5. Watanabe T. The fisheries research of important fish — red halibut. Bull. Jpn. Sea Reg. Fish. Res. Lab. 1956; 4: 281–292 (in Japanese).

    Google Scholar 

  6. Omori M. A study on the production ecology of demersal fishes in Sendai Bay. 2. Interspecific relationships concerning habitat and food. Nippon Suisan Gakkaishi 1975; 41: 615–629.

    Google Scholar 

  7. Fisheries Agency. Annual Report on the Developments in the Fisheries in FY2006. Association of Agriculture and Forestry Statistics, Norin Tokei Kyokai. 2006; 54–62.

    Google Scholar 

  8. Wakayama K, Fujimori Y, Itaya K, Murakami O, Miura T. Mesh selectivity of gillnet for pointhead flounder Cleisthenes pinetorum. Nippon Suisan Gakkaishi 2006; 72: 174–181.

    Article  Google Scholar 

  9. Ishito Y. The characteristics of distribution and migratory pattern of the slime flounder, Microstomus achne, adjusted by the life of their young and adult stages in the North-Eastern Sea area of Japan. Tohoku J. Agric. Res. 1972; 32: 23–46.

    Google Scholar 

  10. Blaxter JHS, Parrish BB, Dickson W. The Importance of Vision in the Reaction of Fish to Driftnets and Trawls. Modern Fishing Gear Of The World No. 2. Fishing News Books Ltd., London. 1964; 529–536.

    Google Scholar 

  11. Wardle CS. Fish reaction to towed fishing gears. In: Macdonald AG, Priede IG (eds). Experimental Biology at Sea. Academic Press, London. 1983; 168–195.

    Google Scholar 

  12. Olla BL, Davis MW, Rose C. Differences in orientation and swimming of walleye pollock Theragra chalcogramma in a trawl net under light and dark conditions: concordance between field and laboratory observations. Fish. Res. 2000; 44: 261–266.

    Article  Google Scholar 

  13. Walls GL. The Vertebrate Eye and its Adaptive Radiation, reprinted 1963. Hafner, New York, NY. 1942; 785.

    Google Scholar 

  14. O’Connell CP. The structure of the eye of Sardinops caerulea, Engraulis mordax, and four other pelagic marine teleosts. J. Morphol. 1963; 113: 287–329.

    Article  PubMed  Google Scholar 

  15. Tsuruta Y, Omori M. Morphological characters of the oral organs of several flatfish species and their feeding behavior. Tohoku. J. Agric. Res. 1976; 27: 92–114.

    Google Scholar 

  16. Tamura T. A study of visual perception in fish, especially on resolving power and accommodation. Nippon Suisan Gakkaishi 1957; 22: 536–557.

    Google Scholar 

  17. Miyagi M, Akiyama S, Arimoto T. The development of visual acuity in yellowtail Seriola quinqueradiata. Nippon Suisan Gakkaishi 2001; 67: 455–459.

    Google Scholar 

  18. Somiya H, Tamura T. Studies on visual accommodation in fishes. Jpn. J. Ichthyol. 1973; 20: 193–206.

    Google Scholar 

  19. Kimura K, Tamura T. On the direction of lens movement in visual accommodation of teleostean eyes. Nippon Suisan Gakkaishi 1966; 32: 112–116.

    Google Scholar 

  20. Hibbard E. Grid patterns in the retinal organization of the cichlid fish Astronotus ocellatus. Exp. Eye Res. 1971; 12: 175–180.

    Article  PubMed  CAS  Google Scholar 

  21. Kawamura G, Nishimura W, Ueda S, Nishi T. Vision in tunas and marlins. Mem. Kagoshima Univ. Res. Ctr. S. Pac. 1981; 1: 3–47.

    Google Scholar 

  22. Engstrom K, Ahlbert IB. Cone types and arrangement in the retina of some flatfishes. Acta Zool. 1963; 9: 1–11.

    Article  Google Scholar 

  23. Lythgoe JN. The Ecology of Vision. Oxford University Press, Oxford. 1979.

    Google Scholar 

  24. Thanapatay D, Fukurotani K. Relative spectral sensitivity and response delay time of S-potential in the retina of the Japanese flounder. Nippon Suisan Gakkaishi 2003; 69: 763–769.

    Google Scholar 

  25. Torisawa S. Visual acuity and spectral sensitivity of Sebastes schlegeli, Pleuronectes, yokohamae and Pleurogrammus azonus. PhD Thesis. University of Hokkaido, Hokkaido. 2002 (in Japanese).

    Google Scholar 

  26. Helvik JV, Drivenes O, Naess TH, Fjose A, Seo HC. Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Vis. Neurosci. 2001; 18: 767–780.

    Article  PubMed  CAS  Google Scholar 

  27. Kawamura G, Tamura T. Morphological studies on the retina of two teleosts, Scomber tapeinocephalus and Halichoeres poecilopterus. Nippon Suisan Gakkaishi 1973; 39: 715–726.

    Google Scholar 

  28. Collin SP, Pettigrew JD. Retinal topography in reef teleosts. Brain Behav. Evol. 1988; 31: 269–282.

    Article  PubMed  CAS  Google Scholar 

  29. Tamura T, Wisby WJ. The visual sense of pelagic fishes, especially the visual axis and accommodation. Bull. Mar. Sci. Gulf Carib. 1963; 13: 433–448.

    Google Scholar 

  30. Momose O, Takei S, Maekawa Y, Uchida M, Somiya H. Visual accommodation system and retinal ganglion cell distribution in the retina of a dolphin fish. Nippon Suisan Gakkaishi 2003; 69: 933–939.

    Google Scholar 

  31. Collin SP, Pettigrew JD. Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain Behav. Evol. 1989; 34: 184–192.

    Article  PubMed  CAS  Google Scholar 

  32. Shiobara Y, Arimoto T. Behavioral analysis of feeding experiments on the visual axis of red sea bream Pagrus major. Nippon Suisan Gakkaishi 1999; 65: 728–731.

    Google Scholar 

  33. Brunner G. Über die Sehschärfe der Elritze Phoxinus laevis bei verschiedenen Helligkeiten. Zeit. Vergl. Physiol. 1934; 21: 297–316.

    Google Scholar 

  34. Yamanouchi T. The visual acuity of the coral fish Microcanthus strigatus (Cuvier and Valenscienes). Pub. Seto Mar. Biol. Lab. 1956; 5: 133–156.

    Google Scholar 

  35. Nakamura EL. Visual acuity of two tunas, Katsuwonus pelamis and Euthynnus affinis. Copeia 1968; 1: 41–44.

    Article  Google Scholar 

  36. Matsuda K, Torisawa S, Hiraishi T, Nashimoto K, Yamamoto K. Visual acuity and spectral sensitivity of the elkhorn sculpin Alcichthys alcicornis. Fish. Sci. 2005; 71: 1136–1142.

    Article  CAS  Google Scholar 

  37. Scheuring L. Beobachtungen und Betrachtungen über die Beziehungen der Augen zum Nahrungserwerb bei Fischen. Zool. Jahrb. 1921; 38: 113–136.

    Google Scholar 

  38. Browman HI, Hawryshyn GW. Thyroxine induces a precocial loss of ultraviolet photosensitivity in rainbow trout (Oncorhynchus mykiss, Teleostei). Vision Res. 1992; 32: 2303–2312.

    Article  PubMed  CAS  Google Scholar 

  39. Browman HI, Hawryshyn GW. The developmental trajectory of ultraviolet photosensitivity in rainbow trout is altered by thyroxine. Vision Res. 1994; 34: 1397–1406.

    Article  PubMed  CAS  Google Scholar 

  40. Losey GS, Cronin TW, Goldsmith TH, Hyde D, Marshall NJ, McFarland WN. The UV visual world of fishes: a review. Journal of Fish Biology 1999; 54: 921–943.

    Article  Google Scholar 

  41. Bublitz CG. Quantitative evaluation of flatfish behavior during capture by trawl gear. Fish. Res. 1996; 25: 293–304.

    Article  Google Scholar 

  42. Fujita K, Kimoto K. Development of towed camera sledge systems to observe demersal juvenile fish. Bull. Natl. Res. Inst. Fish. Eng. 1999; 21: 41–46.

    Google Scholar 

  43. Evans S, Tallmark B. A modified drop-net method for sampling mobile epifauna on marine shallow sandy bottoms. Ecography 1979; 2: 58–64.

    Article  Google Scholar 

  44. Suzuki K. The distribution of likelihood in the extension model of removal method. Math. Phys. Fish. Sci. 2003; 1: 127–139 (in Japanese).

    Google Scholar 

  45. Furuta S, Watanabe T, Yamada H, Nishida T, Miyanaga T. Changes in distribution, growth and abundance of hatchery-reared Japanese flounder Paralichthys olivaceus released in the coastal area of Tottori Prefecture. Nippon Suisan Gakkaishi 1997; 63: 877–885.

    Google Scholar 

  46. Shiobara Y, Arimoto T. Change in visual acuity and retinal adaptation according to light intensity for red sea bream Pagrus major. Nippon Suisan Gakkaishi. 2003; 69: 632–636.

    Google Scholar 

  47. Neumeyer C. Wavelength dependence of visual acuity in goldfish. J. Comp. Physiol. A 2003; 189: 811–821.

    Article  CAS  Google Scholar 

  48. Utne-Palm AC, Bowmaker JK. Spectral sensitivity of the two-spotted goby Gobiusculus flavescens (Fabricius): a physiological and behavioural study. J. Exp. Biol. 2006; 209: 2034–2041.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keishi Matsuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, K., Torisawa, S., Hiraishi, T. et al. Comparison of visual acuity and visual axis of three flatfish species with different ecotypes. Fish Sci 74, 562–572 (2008). https://doi.org/10.1111/j.1444-2906.2008.01559.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2008.01559.x

Key words

Navigation