Skip to main content
Log in

The effects of scallop shell extract on collagen synthesis

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Previous observations showed that scallop shells contain organic components that have various useful applications for skin. In this study, the effect of the organic components of scallop shell (scallop shell extract) on collagen metabolism is investigated. Collagen metabolism is tightly controlled by the collagen degrading matrix metalloproteinases (MMP) and their tissue inhibitors (TIMP). Treatment of human skin fibroblast cells with the scallop shell extract increased the mRNA expression levels of type I collagen, MMP-1 and TIMP-1, suggesting that the scallop shell extract may activate collagen metabolism in skin fibroblast cells. Sirius red staining and the colorimetric quantification of collagen in fibroblast cells demonstrated that the scallop shell extract increased collagen content by approximately 1.3-fold. In vivo studies also revealed that the topical application of the scallop shell extract to rat dorsal skin increased the collagen content in the skin tissue section. These results suggest that the scallop shell extract may be effective for the treatment of photoaged and aging skin, which undergo collagen loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu YC, Torita A, Hasegawa Y. Scallop shell extract promotes recovery from UV-B-induced damage in rat skin epidermal layer. Fish. Sci. 2006; 72: 388–392.

    Article  CAS  Google Scholar 

  2. Liu YC, Uchiyama K, Natsui N, Hasegawa Y. In vitro activities of the components from scallop shells. Fish. Sci. 2002; 68: 1330–1336.

    Article  CAS  Google Scholar 

  3. Torita A, Liu YC, Hasegawa Y. Photoprotective activity in rat skin keratinocyte of the scallop shell extract. Fish. Sci. 2004; 70: 910–915.

    Article  CAS  Google Scholar 

  4. Liu YC, Torita A, Hasegawa Y. Scallop shell extract inhibits squalene monohydroperoxide-induced skin erythema and wrinkle formation in rat. Fish. Sci. (in press).

  5. Oishi Y, Fu ZW, Ohnuki Y, Kato H, Noguchi T. Molecular basis of the alteration in skin collagen metabolism in response to in vivo dexamethasone treatment: effects on the synthesis of collagen type I and III, collagenase, and tissue inhibitors of metalloproteinases. Br. J. Dermatol. 2002; 147: 859–868.

    Article  PubMed  CAS  Google Scholar 

  6. Epstein EH Jr. [α1(III)]3 human skin collagen. Release by pepsin digestion and preponderance in fetal life. J. Biol. Chem. 1974; 249: 3225–3231.

    PubMed  CAS  Google Scholar 

  7. Fligiel SE, Varani J, Datta SC, Kang S, Fisher GJ, Voorhees JJ. Collagen degradation in aged/photodamaged skin in vivo and after exposure to matrix metalloproteinase-1 in vitro. J. Invest. Dermatol. 2003; 120: 842–848.

    Article  PubMed  CAS  Google Scholar 

  8. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. Mechanisms of photoaging and chronological skin aging. Arch. Dermatol. 2002; 138: 1462–1470.

    Article  PubMed  CAS  Google Scholar 

  9. Jenkins G. Molecular mechanisms of skin ageing. Mech. Ageing Dev. 2002; 123: 801–810.

    Article  PubMed  CAS  Google Scholar 

  10. Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002; 1: 705–720.

    Article  PubMed  CAS  Google Scholar 

  11. Fisher GJ, Datta S, Wang Z, Li XY, Quan T, Chung JH, Kang S, Voorhees JJ. c-Jun-dependent inhibition of cutaneous procollagen transcription following ultraviolet irradiation is reversed by all-trans retinoic acid. J. Clin. Invest. 2000; 106: 663–670.

    Article  PubMed  CAS  Google Scholar 

  12. Manthorpe M, Fagnani R, Skaper SD, Varon S. An automated colorimetric microassay for neurotrophic factors. Brain Res. 1986; 390: 191–198.

    Article  PubMed  CAS  Google Scholar 

  13. Tullberg-Reinert H, Jundt G. In situ measurement of collagen synthesis by human bone cells with a Sirius Redbased colorimetric microassay: effects of transforming growth factor β2 and ascorbic acid 2-phosphate. Histochem. Cell Biol. 1999; 112: 271–276.

    Article  PubMed  CAS  Google Scholar 

  14. Leon AL, Rojkind M. A simple micromethod for collagen and total protein determination in formalin-fixed paraffinembedded sections. J. Histochem. Cytochem. 1985; 33: 737–743.

    Google Scholar 

  15. Esteban FJ, Moral ML, Sánchez-López AM, Blanco S, Jiménez A, Hernández R, Pedrosa JA, Peinado MA. Colorimetric quantification and in situ detection of collagen. J. Biol. Educ. 2005; 39: 183–186.

    Google Scholar 

  16. Srumpf M, Cao W, Klinge U, Klosterhalfen B, Kasperk R, Schumpelick V. Increased distribution of collagen type III and reduced expression of matrix metalloproteinase 1 in patients with diverticular disease. Int. J. Colorectal Dis. 2001; 16: 271–275.

    Article  Google Scholar 

  17. Junge K, Rosch R, Anurov M, Titkova S, Ottinger A, Klinge U, Schumpelick V. Modification of collagen formation using supplemented mesh materials. Hernia 2006; 10: 492–497.

    Article  PubMed  CAS  Google Scholar 

  18. Joseph J, Kennedy RH, Devi S, Wang J, Joseph L, Hauer-Jensen M. Protective role of mast cells in homocysteine-induced cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol. 2005; 288: H2541-H2545.

    Article  PubMed  CAS  Google Scholar 

  19. Sanai A, Nagata H, Konno A. Extensive interstitial collagen deposition on the basement membrane zone in allergic nasal mucosa. Acta Otolaryngol. 1999; 119: 473–478.

    Article  PubMed  CAS  Google Scholar 

  20. Okano Y, Obayashi K, Yahagi S, Kurihara S, Kaburagi S, Kurata Y, Masaki H. Improvement of wrinkles by an all-trans-retinoic acid derivative, D-δ-tocopheryl retinoate. J. Dermatol. Sci. 2006; 2 (Suppl.): S65-S74.

    CAS  Google Scholar 

  21. Schröder JM. Cytokine networks in the skin. J. Invest. Dermatol. 1995; 105: 20S-24S.

    Article  PubMed  Google Scholar 

  22. Mauviel A. Transforming growth factor-beta: a key mediator of fibrosis. Methods Mol. Med. 2005; 117: 69–80.

    PubMed  CAS  Google Scholar 

  23. Nawrat P, Surazynski A, Karna E, Palka JA. The effect of hyaluronic acid on interleukin-1-induced deregulation of collagen metabolism in cultured human skin fibroblasts. Pharmacol. Res. 2005; 51: 473–477.

    PubMed  CAS  Google Scholar 

  24. Maas-Szabowski N, Shimotoyodome A, Fusenig NE. Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J. Cell. Sci. 1999; 112: 1843–1853.

    PubMed  Google Scholar 

  25. Griffiths CE, Voorhees JJ. Topical retinoic acid for photoaging: clinical response and underlying mechanisms. Skin Pharmacol. 1993; 6 (Suppl. 1): 70–77.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Hasegawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torita, A., Miyamoto, A. & Hasegawa, Y. The effects of scallop shell extract on collagen synthesis. Fish Sci 73, 1388–1394 (2007). https://doi.org/10.1111/j.1444-2906.2007.01482.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01482.x

Key Words

Navigation