Skip to main content
Log in

Determination of the quality parameters of pike perch Sander lucioperca caught by gillnet, longline and harpoon in Turkey

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The effects of the different catching methods (gillnet, longline, harpoon) on sensory, chemical (pH, total volatile base nitrogen, K-value) and microbiological (total viable count [TVC]) changes in pike perch Sander lucioperca stored in ice were investigated. The same soaking time was used for both gillnet and longline fishing. The catching method had considerable influence on the freshness quality of pike perch. The acceptable shelf life was 15 days for pike perch caught by gillnet, and 22 days for longline and harpoon. The initial concentrations of inosine monophosphate (2.4 μmol/g) in pike perch caught by gillnet were significantly lower (P<0.05) than longline (4.1 μmol/g). and especially by harpoon (16.7 μmol/g). However, the initial K-values for fish caught by harpoon were significantly (P<0.05) lower (24.36%) than fish caught by longline and gillnet (57.69%, 64.41%, respectively). The average K, Ki, G and H-values at rejection day in terms of sensory assessment were approximately 90, 98, 156 and 40%, respectively, for all catching methods during ice storage. However, TVC reached 7.0 log cfu/g after approximately 11 days of storage for fish caught by gillnet, 19 days for fish caught by longline and 8 days for fish caught by harpoon. The result of this study suggests that the best catching method for preserving the freshness of pike perch is longline, based on the data obtained from the sensory and microbiological analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whittle K, Hardy R, Hobbs G. Chilled fish and fishery products. In: Gormley T (ed.), Chilled Foods: The State of the Art. Elsevier, New York, 1990; 87–116.

    Google Scholar 

  2. Ashie IN, Smith JP, Simpson BK. Spoilage and shelf-life extension of fresh fish and shellfish. Crit. Rev. Food Sci. 1996; 36: 87–121.

    Article  CAS  Google Scholar 

  3. Love R. Biochemical dynamics and the quality of fresh and frozen fish. In: Hall G (ed.), Fish Processing Technology. Blackie, London, 1997; 1–31.

    Google Scholar 

  4. Özogul Y, Özogul F. Effects of slaughtering methods on sensory, chemical and microbiological quality of rainbow trout (Onchorynchus mykiss) stored in ice and MAP. Eur. Food Res. Technol. 2004; 219: 211–216.

    Google Scholar 

  5. Hattula T, Luoma T, Kostiainen R, Poutanen J, Kallio M, Suuronen P. Effects of catching method on different quality parameters of Baltic herring (Clupea harengus). Fish. Res. 1995; 23: 209–221.

    Article  Google Scholar 

  6. Hattula T. Adenosine triphosphate breakdown products as a freshness indicator of some fish species and fish products. Espoo 1997, Technical Research Centre of Finland. VIT Publications. 1997; 297, 48p. +app. 31p.

  7. Botta JR, Bonnell G, Squires BE. Effect of method of catching and time of season on sensory quality of fresh raw Atlantic cod (Gadus morhua). J. Food Sci. 1987; 52: 928–931.

    Article  Google Scholar 

  8. Esaiassen M, Nilsen H, Joensen S, Skjerdal T, Carlehög M, Eilertsen G, Gundersen B, Elvevoll E. Effects of catching methods on quality changes during storage of cod (Gadus morhua). Food Sci. Technol./LWT 2004; 37: 643–648.

    Article  CAS  Google Scholar 

  9. Cole RG, Alcock NK, Handley SJ, Grange KR, Black S, Cairney D, Day J, Ford S, Jerrett AR. Selective capture of blue cod (Parapercis colias) by potting: behavioural observations and effects of capture method on peri-mortem fatigue. Fish. Res. 2003; 60: 381–392.

    Article  Google Scholar 

  10. Branch AC, Vail AMA. Bringing fish inspection into the computer age. Food Technol. Aust. 1985; 37: 352–355.

    Google Scholar 

  11. Paulus K, Zacharias R, Robinson L, Geidel H. Kritische betrachtungen zur ‘bewertenden prüfung mit skale’ als einem wesentlichen verfahren der sensorischen analyse. Lebens. Wiss. U. Technol. 1979; 12: 52–61.

    Google Scholar 

  12. Association of Official Analytical Chemists. Official Methods of Analysis of the Association of the Official Analysis Chemists, 14th edn. AOAC, Washington DC. 1984.

    Google Scholar 

  13. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959; 37: 911–917.

    PubMed  CAS  Google Scholar 

  14. Lima dos Santos C, James D, Teutscher F. Guidelines for chilled fish storage experiments. FAO Fish Tech. Paper, Food and Agricultural Organization. Rome, 1981; 210.

    Google Scholar 

  15. Antonocopoulus N. Bestmmung des Flüchhtigen Basensticktoofs. In: Ludorf W, Meyer V (eds). Fische und Fischerzeugnisse. Aulage Verlag Paul Parey, Berlin. 1973; 224–225.

    Google Scholar 

  16. Özogul F, Taylor KDA, Quantick P, Özogul Y. Chemical, microbiological and sensory evaluation of Atlantic herring (Clupea harengus) stored in ice, modified atmosphere and vacuum pack. Food Chem. 2000; 71: 267–273.

    Article  Google Scholar 

  17. Saito T, Arai K, Matsuyoshi M. A new method for estimating the freshness of fish. Bull. Jpn Soc. Sci. Fish. 1959; 24: 749–750.

    CAS  Google Scholar 

  18. Karube I, Matsuoka H, Suzuki S, Watanabe E, Toyama T. Determination of fish freshness with an enzyme sensor system. J. Agr. Food Chem. 1984; 32: 314–319.

    Article  CAS  Google Scholar 

  19. Burns GB, Ke PJ, Irvine BB. Objective procedure for fish freshness evaluation based on nucleotide changes using a HPLC system. Fisheries and Oceans, Scotia-Fund Region, Nova Scotia. Can. Tech. Rep. Fish. Aquat. Sci. 1985; 1373: 35.

    Google Scholar 

  20. Luong JHT, Male KB, Masson C, Nguyen AL. Hypoxanthine ratio determination in fish extract using capillary electrophoresis and immobilized enzymes. J. Food Sci. 1992; 54: 77–81.

    Article  Google Scholar 

  21. Acuff G, Izat AL, Finne G. Microbial flora of pond-reared tilapia (Tilapia aurea) held on ice. J. Food Prot. 1984; 47: 778–780.

    Google Scholar 

  22. González CJ, Lòpez TM, García ML, Prieto M, Otero A. Bacterial microflora of wild brown trout (Salmo trutta), wild pike (Esox lucius), and aquacultured rainbow trout (Oncorhynchus mykiss). J. Food Prot. 1999; 62: 1270–1277.

    PubMed  Google Scholar 

  23. Gelman A, Glatman L, Drabkin V, Harpaz S. Effects of storage temperature and preservative treatment on shelf life of the pond-raised freshwater fish, silver perch (Bidyanus bidyanus). J. Food Prot. 2001; 64: 1584–1591.

    PubMed  CAS  Google Scholar 

  24. Savvaidis IN, Skandamis PN, Riganakos KA, Panagiotakis N, Kontaminas MG. Control of natural microbial flora and Listeria monocytogenes in vacuum-packaged trout at 4 and 10°C using irradiation. J. Food Prot. 2002; 65: 515–522.

    PubMed  Google Scholar 

  25. International Commission on Microbiological Specifications for Foods (ICMSF). Sampling plans for fish and shellfish, in microorganisms in foods. Sampling for Microbiological Analysis; Principles and Scientific Applications. ICMSF. Vol. 2, 2nd edn. University of Toronto Press, Toronto, Canada. 1986; 181–196.

    Google Scholar 

  26. Olgunoglu IA, Polat A, Var I. Chemical and sensory changes of pike perch (Sander lucioperca) fillets during frozen storage (−18°C). Turk. J. Vet. Anim. Sci. 2002; 26: 879–884.

    Google Scholar 

  27. Jankowska B, Zakes Z, Zmijewski T, Szczepkowski M. A comparison of selected quality features of the tissue and slaughter yield of wild and cultivated pikeperch Sander lucioperca (L.). Eur. Food Res. Technol. 2003; 217: 401–405.

    Article  CAS  Google Scholar 

  28. Çelik M, Diler A, Küçükgülmez A. A comparison of the proximate compositions and fatty acid profiles of zander (Sander lucioperca) from two different regions and climatic conditions. Food Chem. 2005; 92: 637–641.

    Article  CAS  Google Scholar 

  29. Bjordal A, Løkkeborg S: Longlining Fishing. New Books, Oxford. 1996.

    Google Scholar 

  30. Özogul Y, Özyurt G, Özogul F, Kuley E, Polat A. Freshness assessment of European eel (Anguilla anguilla) by sensory, chemical and microbiological methods. Food Chem. 2005: 92: 745–751.

    Article  CAS  Google Scholar 

  31. Tomlinson N, Arnold ES, Roberts E, Geiger SE. Observation on post mortem biochemical changes in fish muscle in relation to Rigor mortis. J. Fish. Res. Board Can. 1961; 18: 321–336.

    CAS  Google Scholar 

  32. Kietzmann U, Priebe K, Rakov D, Rekhstein K. Seefisch als Lebensmittel. Paul Parey Verlag, Berlin. 1969.

    Google Scholar 

  33. Ludorf W, Meyer V. Fische und Fischerzeugnisse. Paul Parey Verlag, Berlin. 1973.

    Google Scholar 

  34. Lang K. Der flüchtige Basenstickstoff (TVB-N) bei im Binnenland in der Verkehr gebrachten frischen Seefischen. II. Mitteilung. Arc. Lebensm. Hyg. 1983; 34: 7–9.

    CAS  Google Scholar 

  35. Tejada M, Huidobro A. Quality of farmed gilthead sea bream (Sparus aurata) during ice storage related to the slaughter method and gutting. Eur. Food Res. Technol. 2002; 215: 1–7.

    Article  CAS  Google Scholar 

  36. Kyrana VR, Lugovois VP, Valsamis DS. Assessment of shelf-life of maricultured gilthead sea bream (Sparus aurata) stored in ice. Int. J. Food Sci. Technol. 1997; 32: 339–347.

    Article  CAS  Google Scholar 

  37. Chytiri S, Chouliara I, Savvaidis IN, Kontominas MG. Microbiological, chemical and sensory assessment of iced whole and filleted aquacultured rainbow trout. Food Microbiol. 2004; 21: 157–165.

    Article  CAS  Google Scholar 

  38. Huidobro A, Mendes R, Nunes ML. Slaughtering of gilthead seabream (Sparus aurata) in liquid ice: influence on fish quality. Eur. Food Res. Technol. 2001; 213: 267–272.

    Article  CAS  Google Scholar 

  39. Grigorakis K, Taylor KDA, Alexis MN. Seasonal patterns of spoilage of ice-stored cultured gilthead sea bream (Sparus aurata). Food Chem. 2003; 81: 263–268.

    Article  CAS  Google Scholar 

  40. Özogul F, Gökbulut C, Özyurt G, Özogul Y, Dural M. Quality assessment of gutted wild sea bass (Dicentrarchus labrax) stored in ice, cling film and aluminium foil. Eur. Food Res. Technol. 2005; 220: 292–298.

    Article  CAS  Google Scholar 

  41. Murata M, Sakaguchi M. The effects of phosphatase treatment of yellowtail muscle extracts and subsequent addition of IMP on flavor intensity. Nippon Suisan Gakkaishi 1989; 55: 1599–1603.

    CAS  Google Scholar 

  42. Jacober LF, Rand JAG. Biochemical evaluation of seafood. In: Martin RE, Flick GJ, Herbard CE, Ward DR (eds) Chemistry and Biochemistry of Marine Food Products. Avi Publishing Co., Westport, CT. 1982: 347–366.

    Google Scholar 

  43. Özogul Y, Özoĝul F, Gökbulut C. Quality assessment of wild European eel (Anguilla anguilla) stored in ice. Food Chem. 2006; 95: 458–465.

    Article  CAS  Google Scholar 

  44. Va’zquez-Ortiz FA, Pacheco-Aguilar R, Lugo-Sanchez ME, Villegas-Ozuna RE. Application of the freshness quality index (K Value) for fresh fish to canned sardines from Northwestern Mexico. J. Food Comp. Anal. 1997; 10: 158–165.

    Article  Google Scholar 

  45. Lougovois VP, Kyranas ER, Kyrana VR. Comparison of selected methods of assessing freshness quality and remaining storage life of iced gilthead sea bream (Sparus aurata). Food Res. Int. 2003; 36: 551–560.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yesim Özogul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özyurt, G., Özogul, Y., Özyurt, C.E. et al. Determination of the quality parameters of pike perch Sander lucioperca caught by gillnet, longline and harpoon in Turkey. Fish Sci 73, 412–420 (2007). https://doi.org/10.1111/j.1444-2906.2007.01349.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01349.x

Key words

Navigation