Skip to main content
Log in

Scale regeneration and calcification in goldfish Carassius auratus: quantitative and morphological processes

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The time-course changes in calcium and phosphorus contents, dry weight, and area during scale regeneration in the goldfish, Carassius auratus L. were quantified. Histological observations were then conducted to understand the mutual relationship between the quantitative and morphological processes of scale regeneration. The quantitative study revealed that regenerating scales grow most rapidly in area during the first 5 days of regeneration. The gradual decrease in the area growth rate coupled with the continuous linear weight growth over the period of 5–28 days suggests a shift in growth priority from area growth to the apposition, of the basal plate. Calcium and phosphorus deposition proceeded almost linearly during scale regeneration. Calcification of the bony layer preceded that of the basal plate and, after 14 days of regeneration, calcification of the basal plate started and gradually progressed. On day 28, recovery of calcium and phosphorus contents in the regenerating scales were approximatley 72% of ontogenetic scales, which is lower than the rates of area and weight regeneration (104 and 85%, respectively). Late initiation and slow progress of calcification in the basal plate is suggested to be responsible for the slow regeneration in calcium and phosphorus contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zylberberg L, Geraudie J, Meunier FJ, Sire JY. Biomineralization in the integumental skeleton of the living lower vertebrates. In: Hall BK (ed.), Bone, Volume 4, Bone Metabolism and Mineralization. CRC Press, Boca Raton, FL. 1992; 171–224.

    Google Scholar 

  2. Bereiter-Hahn J, Zylberberg L. Regeneration of teleost fish scale. Comp. Biochem. Physiol. 1993; 105A: 625–641.

    Article  Google Scholar 

  3. Huysseune A, Sire J-Y. Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. Eur. J. Oral. Sci. 1998; 106 (Suppl. 1): 437–481.

    PubMed  Google Scholar 

  4. Meunier FJ. Scales. In: Panfili J, Pontual H (de), Troadec H, Wright PJ (eds), Manual of Fish Sclerochronology. Ifremer-IRD Coedition, Brest. 2002; 58–64.

    Google Scholar 

  5. Sire J-Y, Akimenko M-A. Scale development in fish: a review, with description of sonic hedgehoc (shh) expression in the zebrafish (Danio rerio). Int. J. Dev. Biol. 2004; 48: 223–247.

    Article  Google Scholar 

  6. Maekawa K, Yamada J. Some histochemical and fine structural aspects of growing scales of the rainbow trout. Bull. Fac. Fish. Hokkaido Univ. 1970; 21: 70–78.

    Google Scholar 

  7. Yamada J. A fine structural aspect of the development of scales in the chum salmon fry. Bull. Japan. Soc. Sci. Fish. 1971; 37: 18–29.

    Google Scholar 

  8. Onozato H, Watabe N. Studies on fish scale formation and resorption III. Fine structure and calcification of the fibrillary plates of the scales in Carassius auratus (Cypriniformes: Cyprinidae). Cell Tissue Res. 1979; 201: 409–472.

    Article  PubMed  CAS  Google Scholar 

  9. Schönbörner AA, Boivin G, Baud CA. The mineralization processes in teleost fish scales. Cell Tissue Res. 1979; 202: 203–212.

    Article  PubMed  Google Scholar 

  10. Olson OP, Watabe N. Studies on formation and resorption of fish scales IV. Ultrastructure of developing scales in newly hatched fry of the sheepshead minnow, Cyprinodon variegatus (Atheriniformes: Cyprinodontidae). Cell Tissue Res. 1980; 211 303–316.

    Article  PubMed  CAS  Google Scholar 

  11. Sire J-Y, Géraudie J. Fine structure of regenerating scales and their associated cells in the cichlid Hemichromis bim aculatus (Gill). Cell Tissue Res. 1984; 237: 537–547.

    Article  Google Scholar 

  12. Yamada J, Watabe N. Studies on fish scale formation and resorption I. Fine structure and calcification of the scales in Fundulus heteroclitus (Atheriniformes: Cyprinodontidae). J. Morph. 1979; 159: 49–66.

    Article  Google Scholar 

  13. Meunier FJ. Spatial organization and mineralization of the basal plate of elasmoid scales in Osteichthyans. Am. Zool. 1984; 24: 953–964.

    Google Scholar 

  14. Birk DE. Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 2001; 32: 223–237.

    Article  PubMed  CAS  Google Scholar 

  15. Meek KM, Fullwood NJ, Corneal and scleral collagens — a microscopist’s perspective. Micron. 2001; 32: 261–272.

    Article  PubMed  CAS  Google Scholar 

  16. Maurice DM. The structure and transparency of the corneal stroma. J. Physiol. 1957; 136: 263–286.

    PubMed  CAS  Google Scholar 

  17. Takagi Y, Ura K. Teleost fish scales: a unique biological model for the fabrication of materials for corneal stroma regeneration. J. Nanosci. Nanotechnol. 2007; 7 (in press).

  18. Neave F. On the histology and regeneration of the teleost scale. Quart. J. Microscopic. Sci. N.S.. 1940; 81: 541–568.

    Google Scholar 

  19. Yamada J. Studies on the structure and growth of the scales in the goldfish. Mem. Fac. Fish. Hokkaido Univ. 1961; 9: 181–226.

    Google Scholar 

  20. Frietsche RA, Bailey CF. The histology and calcification of regenerating scales in the blackspotted topminnow, Fundulus olivaceus (Storer). J. Fish Biol. 1980; 16: 693–700.

    Article  Google Scholar 

  21. Yoshikubo H, Suzuki N, Takemura K, Hoso M, Yashima S, Iwamuro S, Takagi Y, Tabata MJ, Hattori A. Osteoblastic activity and estrogenic response in the regenerating scale of goldfish, a good model of osteogenesis. Life. Sci. 2005; 76: 2699–2709.

    Article  PubMed  CAS  Google Scholar 

  22. Carlsson DJ, Li F, Shimmura S, Griffith M. Bioengineered corneas: how close are we? Curr. Opin. Ophthalmol. 2003; 14: 192–197.

    Article  PubMed  Google Scholar 

  23. Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NLC, Hakim M, Song Y, Watsky MA. Functional human corneal equivalents constructed from cell lines. Science. 1999; 286: 2169–2172.

    Article  PubMed  CAS  Google Scholar 

  24. Goldenberg H, Fernandez A. Simplified method for the estimation of inorganic phosphorus in body fluids. Clin. Chem. 1966; 12: 871–882.

    PubMed  CAS  Google Scholar 

  25. Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millán JL. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J. Bone. Min. Res. 2000; 15: 1879–1888.

    Article  CAS  Google Scholar 

  26. Persson P, Takagi Y, Björnsson BTh. Tartrate resistant acid phosphatase as a marker for scale resorption in rainbow trout, Oncorhynchus mykiss: effects of estradiol-17β treatment and refeeding. Fish Physiol. Biochem., 1995; 14: 329–339.

    Article  CAS  Google Scholar 

  27. Persson P, Björnsson BTh, Takagi Y. Characterization of morphology and physiological actions of scale osteoclasts in the rainbow trout. J. Fish Biol., 1999; 54: 669–684.

    Article  Google Scholar 

  28. Suzuki N, Suzuki T, Kurokawa T. Suppression of osteoclastic activities by calcitonin in the scales of goldfish (freshwater teleost) and nibbler fish (seawater teleost). Peptides 2000; 21: 115–124.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohira, Y., Shimizu, M., Ura, K. et al. Scale regeneration and calcification in goldfish Carassius auratus: quantitative and morphological processes. Fish Sci 73, 46–54 (2007). https://doi.org/10.1111/j.1444-2906.2007.01300.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2007.01300.x

Key words

Navigation