Skip to main content
Log in

Logarithmic Quantile Estimation for Rank Statistics

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2017

This article has been updated

Abstract

We prove an almost sure weak limit theorem for simple linear rank statistics for samples with continuous distributions functions. As a corollary, the result extends to samples with ties and to the vector version of an almost sure (a.s.) central limit theorem for vectors of linear rank statistics. Moreover, we derive such a weak convergence result for some quadratic forms. These results are then applied to quantile estimation, and to hypothesis testing for nonparametric statistical designs, here demonstrated by the c-sample problem, where the samples may be dependent. In general, the method is known to be comparable to the bootstrap and other nonparametric methods (Thangavelu 2005; Fridline 2009), and we confirm this finding for the c-sample problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 01 March 2017

    The main theorem was incorrect in the original online and print publications. The condition in Eq. (11) within Theorem 2.1 should read

References

  • Akritas, M. G., and S. F. Arnold. 1994. Fully nonparametric hypotheses for factorial designs I: multivariate repeated measures designs. J. Am. Stat. Assoc., 89, 336–343.

    Article  MathSciNet  Google Scholar 

  • Akritas, M. G., S. F. Arnold, and E. Brunner. 1997. Nonparametric hypotheses and rank statistics for unbalanced factorial designs. J. Am. Stat. Assoc., 92, 258–265.

    Article  MathSciNet  Google Scholar 

  • Babu, G. J., and A. R. Padmanabhan. 2002. Re-sampling methods for the nonparametric Behrens-Fisher problem. Sankhya Indian J. Stat., Ser. A, 64, 678–692.

    MATH  Google Scholar 

  • Berkes, I., and E. Csáki. 2001. A universal result in almost sure central limit theory. Stochastic Processes Their Appl., 94, 105–134.

    Article  MathSciNet  Google Scholar 

  • Berkes, I., and H. Dehling. 1993. Some limit theorems in log density. Ann. Probability, 21, 1640–1670.

    Article  MathSciNet  Google Scholar 

  • Boos, D. D. 1986. Comparing K populations with linear rank statistics. J. Am. Stat. Assoc., 81(396), 1018–1025.

    MathSciNet  MATH  Google Scholar 

  • Brosamler, G. A. 1988. An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc., 104, 561–574.

    Article  MathSciNet  Google Scholar 

  • Brunner, E., and M. Denker. 1994. Rank statistics under dependent observations and applications to factorial designs. J. Stat. Plan. Inference, 42, 353–378.

    Article  MathSciNet  Google Scholar 

  • Brunner, E., and U. Munzel. 2000. The nonparametric Behrens-Fisher problem: Asymptotic theory and a small-sample approximation. Biometr. J., 42, 17–23.

    Article  MathSciNet  Google Scholar 

  • Brunner, E., and M. L. Puri. 1996. Nonparametric methods in design and analysis of experiments. In Handbook of statistics, Vol. 13, 631–703. Amsterdam, The Netherlands: Elsevier Science.

    MATH  Google Scholar 

  • Brunner, E., and M. L. Puri. 2002. A class of rank-score tests in factorial designs. J. Stat. Plan. Inference, 103, 331–360.

    Article  MathSciNet  Google Scholar 

  • Chuprunov, A., and I. Fazekas. 2004. Almost sure limit theorems for the Pearson statistic. Theory Probab. Appl., 48, 14–147.

    Article  MathSciNet  Google Scholar 

  • Denker, M., and M. Fridline. 2010. The almost sure version of Cramer’s theorem. In Dependence in probability, analysis and number theory, 195–201. Heber City, UT: Kendrick Press.

    Google Scholar 

  • Devroye, L. 1986. Non-uniform random variate generation. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • Efron, B. 1979. Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 1–26.

    Article  MathSciNet  Google Scholar 

  • Fridline, M. 2009. Almost sure confidence intervals for the correlation coefficient. Ph.D. thesis, Case Western Reserve University, Cleveland, OH.

    Google Scholar 

  • Gentle, J. 2003. Random number generation and Monte Carlo methods. New York, NY: Springer-Verlag.

    MATH  Google Scholar 

  • Holzmann, H., S. Koch, and A. Min. 2004. Almost sure limit theorems for U-statistics. Stat. Probability Lett., 69, 261–269.

    Article  MathSciNet  Google Scholar 

  • Lacey, M. T., and W. Philipp. 1990. A note on the almost sure central limit theorem. Stat. Probability Lett., 9, 201–205.

    Article  MathSciNet  Google Scholar 

  • Lifshits, M. A. 2002. The almost sure limit theorem for sums of random vectors. J. Math. Sci., 109(6), 2166–2178.

    Article  MathSciNet  Google Scholar 

  • Lifshits, M. A. 2001. Lecture notes on almost sure limit theorems. Publications IRMA, Lille, 54, No. 8, 1–23.

    Google Scholar 

  • Munzel, U. 1999. Linear rank score statistics when ties are present. Stat. Probability Lett., 41, 389–395.

    Article  MathSciNet  Google Scholar 

  • Nation, J. R., A. E., Bourgeois, D. E., Clark, D. M., Baker, and M. F. Hare. 1984. The effects of oral cadmium exposure on passive avoidance performance in the adult rat. Toxicol. Lett., 20, 41–47.

    Article  Google Scholar 

  • Neuhäuser, M. 2012. Nonparametric statistical tests: A computational approach. Boca Raton, FL: Chapman & Hall, CRC Press.

    MATH  Google Scholar 

  • Peligrad, M., and Q. M. Shao. 1995. A note on the almost sure central limit theorem for weakly dependent random variables. Stat. Probability Lett., 22, 131–136.

    Article  MathSciNet  Google Scholar 

  • Reiczigel, J., I. Zakariàs, and L. Rözsa. 2005. A bootstrap test of stochastic equality of two populations. Am. Stat., 59, 156–161.

    Article  MathSciNet  Google Scholar 

  • Schatte, P. 1988. On strong versions of the central limit theorem. Math. Nachricht., 137, 249–256.

    Article  MathSciNet  Google Scholar 

  • Singh, R. S. 1975. On the Glivenko-Cantelli theorem for weighted empiricals based on independent random variables. Ann. Probability, 3, 371–374.

    Article  MathSciNet  Google Scholar 

  • Steland, A. 1998. Bootstrapping rank statistics. Metrika, 47, 251–264.

    Article  MathSciNet  Google Scholar 

  • Thangavelu, K. 2005. Quantile estimation based on the almost sure central limit theorem. Ph.D. thesis, Göttingen University, Göttingen, Germany.

    MATH  Google Scholar 

  • Zöfel, P. 1992. Univariate Varianzanalysen. Uni-Taschenbuch 1663, G. Fischer Verlag, Jena, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Tabacu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denker, M., Tabacu, L. Logarithmic Quantile Estimation for Rank Statistics. J Stat Theory Pract 9, 146–170 (2015). https://doi.org/10.1080/15598608.2014.886312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2014.886312

AMS Subject Classification

Keywords

Navigation