Skip to main content
Log in

A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter

  • Original Paper
  • Published:
TEST Aims and scope Submit manuscript

Abstract

Highly robust and efficient estimators for generalized linear models with a dispersion parameter are proposed. The estimators are based on three steps. In the first step, the maximum rank correlation estimator is used to consistently estimate the slopes up to a scale factor. The scale factor, the intercept, and the dispersion parameter are robustly estimated using a simple regression model. Then, randomized quantile residuals based on the initial estimators are used to define a region S such that observations out of S are considered as outliers. Finally, a conditional maximum likelihood (CML) estimator given the observations in S is computed. We show that, under the model, S tends to the whole space for increasing sample size. Therefore, the CML estimator tends to the unconditional maximum likelihood estimator and this implies that this estimator is asymptotically fully efficient. Moreover, the CML estimator maintains the high degree of robustness of the initial one. The negative binomial regression case is studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrevaya J (1999) Computation of the maximum rank correlation estimator. Econ Lett 62:279–285

    Article  MathSciNet  MATH  Google Scholar 

  • Aeberhard WH, Cantoni E, Heritier S (2014) Robust inference in the negative binomial regression model with an application to falls data. Biometrics 70:920–931

    Article  MathSciNet  MATH  Google Scholar 

  • Agostinelli C, Marazzi A (2018) robustnegbin: robust estimates for the negative binomial regression model. R package, Preliminary version

  • Alfons A (2015) ccaPP: (Robust) canonical correlation analysis via projection pursuit. R package version 0.3.1

  • Alfons A, Croux C, Filzmoser P (2017) Robust maximum association estimators. J Am Stat Assoc 112(517):436–445

    Article  MathSciNet  Google Scholar 

  • Amiguet M (2011) Adaptively weighted maximum likelihood estimation of discrete distributions. Ph.D. thesis, Université de Lausanne, Switzerland

  • Austin PC, Rothwell DM, Tu JV (2002) A comparison of statistical modeling strategies for analyzing length of stay after CABG surgery. Health Serv Outcomes Res Methodol 3:107–133

    Article  Google Scholar 

  • Cadigan NG, Chen J (2001) Properties of robust M-estimators for Poisson and negative binomial data. J Stat Comput Simul 70:273–288

    Article  MathSciNet  MATH  Google Scholar 

  • Cantoni E, Ronchetti E (2001) Robust inference for generalized linear models. J Am Stat Assoc 96(455):1022–1030

    Article  MathSciNet  MATH  Google Scholar 

  • Cantoni E, Zedini A (2009). A robust version of the hurdle model. Cahiers du département d’économétrie No 2009.07, Faculté des sciences économiques et sociales, Université de Genève

  • Carter EM, Potts HWW (2014) Predicting length of stay from an electronic patient record system: a primary total knee replacement example. BMC Med Inform Decis Mak 14:26

    Article  Google Scholar 

  • Cuesta-Albertos JA, Matrán C, Mayo-Iscar A (2008) Trimming and likelihood: robust location and dispersion estimate in the elliptical model. Ann Stat 36(5):2284–2318

    Article  MATH  Google Scholar 

  • Davison AC, Snell EJ (1991) Residuals and diagnostics. In: Hinkley DV, Reid N, Snell EJ (eds) Statistical theory and modelling: in honour of Sir David Cox. Chapman and Hall, Boca Raton, pp 83–106

    Google Scholar 

  • Dunn PK, Smyth GK (1996) Randomized quantile residuals. J Comput Graph Stat 5(3):236–244

    Google Scholar 

  • Gervini D, Yohai VJ (2002) A class of robust and fully efficient regression estimators. Ann Stat 30(2):583–616

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh A, Basu A (2013) Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression. Electron J Stat 7:2420–2456

    Article  MathSciNet  MATH  Google Scholar 

  • Ghosh A, Basu A (2016) Robust estimation in generalized linear models: the density power divergence approach. TEST 25:269–290

    Article  MathSciNet  MATH  Google Scholar 

  • Hampel FR, Ronchetti EM, Rousseeuw PJ, Stahel WA (1986) Robust statistics: the approach based on influence functions. Wiley, New York

    MATH  Google Scholar 

  • Han AK (1987a) Non-parametric analysis of a generalized regression model: the maximum rank correlation estimator. J Econ 35(23):303–316

    Article  MATH  Google Scholar 

  • Han AK (1987b) A non-parametric analysis of transformations. J Econ 35(2–3):191–209

    Article  MATH  Google Scholar 

  • Heritier S, Cantoni E, Copt S, Victoria-Feser MP (2009) Robust methods in biostatistics. Wiley, Chichester

    Book  MATH  Google Scholar 

  • Hilbe JM (2008) Negative binomial regression. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Huber PJ (1980) Robust statistics. Wiley, New York

    Google Scholar 

  • Künsch HR, Stefanski LA, Carroll RJ (1989) Conditionally unbiased bounded-influence estimation in general regression models, with applications to generalized linear models. J Am Stat Assoc 84(406):460–466

    MathSciNet  MATH  Google Scholar 

  • Locatelli I, Marazzi A, Yohai VJ (2010) Robust accelerated failure time regression. Comput Stat Data Anal 55(1):874–887

    Article  MathSciNet  MATH  Google Scholar 

  • Marazzi A, Yohai VJ (2004) Adaptively truncated maximum likelihood regression with asymmetric errors. J Stat Plan Inference 122(1–2):271–291

    Article  MathSciNet  MATH  Google Scholar 

  • Marazzi A, Yohai VJ (2010) Optimal robust estimates based on the Hellinger distance. Adv Data Anal Classif 4(2):169–179

    Article  MathSciNet  MATH  Google Scholar 

  • Marazzi A, Paccaud F, Ruffieux C, Beguin C (1998) Fitting the distribution of length of stay by parametric models. Med Care 36(6):915–927

    Article  Google Scholar 

  • Maronna RA, Martin RD, Yohai VJ (2006) Robust statistics theory and methods. Wiley, New York

    Book  MATH  Google Scholar 

  • Min Y, Agresti A (2002) Modeling nonnegative data with clumping at zero: a survey. J Iran Stat Soc 1(1–2):7–33

    MATH  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135(3):370–384

    Article  Google Scholar 

  • Rousseeuw PJ (1985) Multivariate estimation with high breakdwon point. In: Grossman W, Pflug G, Vincze I, Wertz W (eds) Mathematical statistics and applications. Reidel Publishing, Dordrecht, pp 283–297

    Chapter  Google Scholar 

  • Sherman RP (1993) The limiting distribution of the maximum rank correlation estimator. Econometrica 61(1):123–137

    Article  MathSciNet  MATH  Google Scholar 

  • Valdora M, Yohai VJ (2014) Robust estimation in generalized linear models. J Stat Plan Inference 146:31–48

    Article  MATH  Google Scholar 

  • Yohai VJ (1987) High breakdown-point and high efficiency robust estimates for regression. Ann Stat 15(2):642–656

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfio Marazzi.

Additional information

Victor Yohai was partially supported by grants pict 2014-0351 from anpcyt and 20020130100279BA from the Universidad de Buenos Aires at Buenos Aires, Argentina. Marina Valdora was partially supported by grant 20020130100279Ba from the Universidad de Buenos Aires at Buenos Aires, Argentina. We also thank two anonymous referees for their valuable comments that helped to improve the presentation of the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 332 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marazzi, A., Valdora, M., Yohai, V. et al. A robust conditional maximum likelihood estimator for generalized linear models with a dispersion parameter. TEST 28, 223–241 (2019). https://doi.org/10.1007/s11749-018-0624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11749-018-0624-0

Keywords

Mathematics Subject Classification

Navigation