Skip to main content
Log in

Multidisciplinary Perspectives on a Video Case of Children Designing and Coding for Robotics

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Spatial reasoning plays a vital role in choice of and success in science, technology, engineering, and mathematics (STEM) careers, yet the topic is scarce in grade school curricula. We conjecture that this absence may be due to limited knowledge of how spatial reasoning is discussed and engaged across STEM professions. This study aimed to address that gap by asking 19 professionals to comment on a video that documented children’s progression through 5 days of building and programming robots. Their written opinions on the skills relevant to their careers demonstrated by the children revealed that spatial thinking and design thinking are central to what they see.

Rśumé

Le raisonnement spatial joue un rôle essentiel dans la décision d’entreprendre une carrière STEM et de réussir dans les domaines concernés. Pourtant, ces matières sont peu représentées dans les curriculums à l’école primaire. Nous supposons que cette absence puisse être due à un manque de connaissances quant à la façon dont le raisonnement spatial est traité dans l’ensemble des professions STEM. Cette étude vise à combler ce manque en demandant à 19 professionnels de commenter une vidéo qui documente la progression d’enfants qui construisent et programment des robots pendant 5 jours. Les commentaires écrits des répondants sur les habiletés pertinentes illustrées par les élèves montrent que la pensée spatiale et la pensée conceptuelle sont fondamentales dans leur profession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbot, L. (Ed.). (2014, August 26). 21st Century skills definition. The Glossary of Education Reform. Retrieved from https://doi.org/edglossary.org/21st-century-skills/

    Google Scholar 

  • Berglund, A., & Heintz, F. (2014). Integrating soft skills into engineering education for increased student throughput and more professional engineers. In Proceedings of the LTHs 8:e Pedagogiska Inspirationskonferens. Lunds Tekniska Högskola. Retrieved from https://doi.org/www.lth.se/fleadmin/lth/genombrottet/konferens2014/11_Berglund_Heintz.pdf

    Google Scholar 

  • Bishop, A. J. (1988). Mathematics education in its cultural context. Educational Studies in Mathematics, 19(2), 179–191.

    Article  Google Scholar 

  • Bruce, C. D., Davis, B., Sinclair, N., McGarvey, L., Hallowell, D., Drefs, M., … Woolcott, G. (2016). Understanding gaps in research networks: Using “spatial reasoning” as a window into the importance of networked educational research. Educational Studies in Mathematics, online, 1–19. doi:10.1007/s10649-016-9743-2

    Google Scholar 

  • Bruce, C. D., & Hawes, Z. (2015). The Role of 2D and 3D mental rotation in mathematics for young children: What is it? Why does it matter? And what can we do about it? ZDM: The International Journal on Mathematics Education, 47, 331–343.

    Google Scholar 

  • Bussi, M. G. B., & Baccaglini-Frank, A. (2015). Geometry in early sources: Sowing seeds for a mathematical definition of squares and rectangles. ZDM: The International Journal on Mathematics Education, 47, 391–405.

    Article  Google Scholar 

  • Casey, B. M., Dearing, E., Vasilyeva, M., Ganley, C. M., & Tine, M. (2011). Spatial and numerical predictors of measurement performance: The moderating effects of community income and gender. Journal of Educational Psychology, 103, 296–311.

    Article  Google Scholar 

  • Charmaz, K. (2014). Constructing grounded theory (2nd ed.). Thousand Oaks, CA: SAGE Publications.

    Google Scholar 

  • Clements, D. H. (2004). Geometric and spatial thinking in early childhood education. In D. H. Clements, J. Sarama, & A.-M. DiBiase (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education (pp. 267–298). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial thinking test. Learning and Individual Differences, 22, 868–874.

    Article  Google Scholar 

  • Davis, B., Okamoto, Y., & Whiteley, W. (2015). Spatializing school mathematics. In B. Davis (Ed.), Spatial reasoning in the early sources: Principles, assertions, and speculations (pp. 139–150). New York, NY: Routledge.

    Google Scholar 

  • Francis, K., Khan, S., & Davis, B. (2016). Enactivism, spatial reasoning and coding. Digital Experiences in Mathematics Education, 2, 1–20.

    Article  Google Scholar 

  • Francis, K., & Whitely, W. (2015). Interactions between three dimensions and two dimensions. In B. Davis (Ed.), Spatial reasoning in the early years: Principles, assertions, and speculations (pp. 121–136). New York, NY: Routledge.

    Google Scholar 

  • Fu, T. Z. J., Song, Q., & Chiu, D. M. (2014). The academic social network. Scientometrics, 101, 203–239.

    Article  Google Scholar 

  • Hawes, Z., Tepylo, D., & Moss, J. (2015). Developing spatial thinking: Implications for early mathematics education. In B. Davis & Spatial Reasoning Study Group (Eds.), Spatial reasoning in the early sources: Principles, assertions and speculations (pp. 29–44). New York, NY: Routledge.

    Google Scholar 

  • Hoyles, C., & Noss, R. (2002, July). Problematising statistical meanings: A sociocultural perspective. Paper presented at the International Conference on Teaching Statistics, Cape Town, South Africa. Retrieved from https://doi.org/iase-web.org/documents/papers/icots6/2e3_hoyl.pdf

    Google Scholar 

  • Khan, S., Francis, K., & Davis, B. (2015). Accumulation of experience in a vast number of cases: Enactivism as a fit framework for the study of spatial reasoning in mathematics education. ZDM: The International Journal on Mathematics Education, 47, 1–11.

    Article  Google Scholar 

  • McGraw-Hill. (2014). Home—The Geometer’s Sketchpad Resource Center. Retrieved from https://doi.org/dynamicgeometry.com/

  • Mioduser, D., & Levy, S. T. (2010). Making sense by building sense: Kindergarten children’s construction and understanding of adaptive robot behaviors. International Journal of Computers for Mathematical Learning, 15(2), 99–127.

    Article  Google Scholar 

  • National Aeronautics and Space Administration. (2014, January 8). Engineering design process. Retrieved from https://doi.org/www.nasa.gov/audience/foreducators/best/edp.html

    Google Scholar 

  • Newman, M., Barabási, A.-L., & Watts, D. J. (2006). The structure and dynamics of networks. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Piaget, J., & Inhelder, B. (1971). Mental imagery in the child: A study of the development of imaginal representation. British Journal of Educational Studies, 19(3), 343–344.

    Article  Google Scholar 

  • Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education (pp. 205–235). Rotterdam, the Netherlands: Sense Publishers.

    Google Scholar 

  • QSR International. (2016). NVivo qualitative data analysis software. Retrieved from https://doi.org/www.qsrinternational.com/

    Google Scholar 

  • Razzouk, R., & Shute, V. (2012). What is design thinking and why is it important? Review of Educational Research, 82, 330–348.

    Article  Google Scholar 

  • Rowe, S. (2004). Discourse in activity and activity as discourse. In R. Rogers (Ed.), An introduction to critical discourse analysis in education (pp. 79–96). Mahwah, NJ: Lawrence Erlbaum. Retrieved from https://doi.org/ezproxy.lib.ucalgary.ca/login?url=https://doi.org/search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=104206&site=ehost-live

    Google Scholar 

  • Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering students. International Journal of Science Education, 31, 459–480.

    Article  Google Scholar 

  • Spatial Reasoning Study Group (SRSG). (n.d.). The Spatial Reasoning Study Group. Retrieved from https://doi.org/www.spatialresearch.org/

  • Steve Jobs says everyone should learn to program. (2012). Retrieved from https://doi.org/www.youtube.com/watch?v=mCDkxUbalCw

  • Strauss, A., & Corbin, J. (1998). Basics of qualitative research techniques and procedures for developing grounded theory (Vol. 2). Thousand Oaks, CA: Sage Publications.

  • Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139, 352–402.

    Article  Google Scholar 

  • Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 sources of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817–835.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krista Francis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francis, K., Bruce, C., Davis, B. et al. Multidisciplinary Perspectives on a Video Case of Children Designing and Coding for Robotics. Can. J. Sci. Math. Techn. Educ. 17, 165–178 (2017). https://doi.org/10.1080/14926156.2017.1297510

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2017.1297510

Navigation