Skip to main content
Log in

The Integration of Mathematics in Physics Problem Solving: A Case Study of Greek Upper Secondary School Students

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

This article presents a case study that examines the level of integration of mathematical knowledge in physics problem solving among first grade students of upper secondary school. We explore the ways in which two specific students utilize their knowledge and we attempt to identify the epistemological framings they refer to while solving a physics problem. Participant observation was used for data collection, and the students’ verbal interactions were video-recorded. The analysis shows that they tend to use a wide spectrum of epistemological framings that entangle mathematics and physics but at the same time face significant practical difficulties in modulating the two subjects.

RéSumé

Cet article présente une étude de cas qui analyse le niveau d’intégration des savoirs mathématiques appliqués à la résolution de problèmes de physique chez des élèves en première année du deuxième cycle au secondaire. Nous nous penchons sur les façons dont deux étudiants en particulier se servent de leurs connaissances et nous tentons de déterminer les cadres épistémologiques auxquels ils font référence pour la résolution d’un problème de physique. Nous avons observé les participants pour recueillir les données, et filmé sur vidéo leurs interactions verbales. L’analyse montre qu’ils utilisent un large éventail de cadres épistémologiques qui mélangent les mathématiques et la physique, mais aussi qu’ils font face à de sérieuses difficultés d’ordre pratique lorsqu’il s’agit de moduler les deux sujets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arons, A. B. (1984). Student patterns of thinking and reasoning. The Physics Teacher, 22(1), 21–26. doi:10.1119/1.2341444

    Article  Google Scholar 

  • Ashmann, S., Zawojewski, J., & Bowman, K. (2006). Integrated mathematics and science teacher education courses: A modelling perspective. Canadian Journal of Science, Mathematics and Technology Education, 6(2), 189–200. doi:10.1080/14926150609556695

    Article  Google Scholar 

  • Bing, T. J., & Redish, E. F. (2007). The cognitive blending of mathematics and physics knowledge. In AIP Conference Proceedings (Vol. 883, pp. 26–29). Syracuse, NY: AIP. doi:10.1063/1.2508683

    Chapter  Google Scholar 

  • Bing, T. J., & Redish, E. F. (2009). Analyzing problem solving using math in physics: Epistemological framing via warrants. Physics Education Research, 5, 1–15. doi:10.1103/PhysRevSTPER.5.020108

    Google Scholar 

  • Bing, T. J., & Redish, E. F. (2012). Epistemic complexity and the journeyman–expert transition. Physical Review Special Topics - Physics Education Research, 8(1), 1–11. doi:10.1103/PhysRevSTPER.8.010105

    Article  Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects— State, trends and issues in mathematics instruction. Education Studies in Mathematics, 22, 37–68.

    Article  Google Scholar 

  • Bodin, M. (2012). Computational problem solving in university physics education. Umea, Sweden: Umea University.

    Google Scholar 

  • Boujaoude, S. B., & Jurdak, M. E. (2010). Integrating physics and math through microcomputer-based laboratories (MBL): Efects on discourse type, quality, and mathematization. International Journal of Science and Mathematics Education, 8, 1019–1047.

    Article  Google Scholar 

  • Chi, M. T. H. (1981). Categorization and representation of physics problems by experts and novices. Cognition Science, 5, 121–152.

    Article  Google Scholar 

  • Clement, J. (1987). Generation of spontaneous analogies by students solving science problems. In D. Topping, D. Crowell, & V. Kobayashi (Eds.), Thinking across cultures (pp. 303–308). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Clement, J. (1988). Observed methods for generating analogies in scientifc problem solving. Cognitive Science, 12, 563–586.

    Article  Google Scholar 

  • Clement, J., Lochhead, J., & Monk, G. S. (1981). Translation difculties in learning mathematics. American Mathematical Monthly, 88(4), 286–290.

    Article  Google Scholar 

  • Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th ed.). London, England: Routledge Falmer.

    Google Scholar 

  • Felder, R. M., & Brent, R. (2009). Active learning: An introduction. ASQ Higher Education Brief, 2(4), 1–6.

    Google Scholar 

  • Gallardo, P. C. (2009). Mathematical models in the context of sciences. In M. Blomhøj & S. Carreira (Eds.), Proceedings From Topic Study Group 21 at the 11th International Congress on Mathematical ducation (pp. 117–131). Monterrey, Mexico: Roskilde University, Department of Science, Systems and Models, IMFUFA.

    Google Scholar 

  • Gallegos, R. (2009). Diferential equations as a tool for mathematical modelling in physics and mathematics courses— A study of high school textbooks and the modelling processes of senior high students. In M. Blomhøj & S. Carreira (Eds.), Proceedings From Topic Study Group 21 at the 11th International Congress on Mathematical ducation (pp. 19–34). Monterrey, Mexico: Roskilde University, Department of Science, Systems and Models, IMFUFA.

    Google Scholar 

  • Gold, R. (1958). Roles in sociological feld observations. Social Forces, 6, 217–223.

    Article  Google Scholar 

  • Hanna, G., Jahnke, H. N., Lomas, D., Hanna, G., Jahnke, H. N., Debruyn, Y., & Lomas, D. (2001). Teaching mathematical proofs that rely on ideas from physics. Canadian Journal of Science, Mathematics and Technology Education, 1(2), 183–192. doi:10.1080/14926150109556460

    Article  Google Scholar 

  • Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208, 1335–1342.

    Article  Google Scholar 

  • Larkin, J. H., & Reif, F. (1979). Understanding and teaching problem—Solving in physics. European Journal of Science Education, 1(2), 191–203. doi:10.1080/0140528790010208

    Article  Google Scholar 

  • Lopez-Gay, R., Martinez Saez, J., & Martinez Torregrosa, J. (2015). Obstacles to mathematization in physics: The case of the diferential. Science & Education, 24, 591–613. doi:10.1007/s11191-015–9757-7

    Article  Google Scholar 

  • Mercer, N. (1995). The guided construction of knowledge: Talk amongst teachers and learners. Clevedon, England: Multilingual Matters.

    Google Scholar 

  • Mercer, N., & Sams, C. (2006). Teaching children how to use language to solve math problems. Language and Education, 20(6), 507–528.

    Article  Google Scholar 

  • Mercer, N., & Wegerif, R. (1999). Is “exploratory talk” productive talk? In K. Littleton & P. Light (Eds.), Learning with computers: Analysing productive interactions (pp. 79–101). London, England: Routledge.

    Google Scholar 

  • Monk, M. (1994). Mathematics in physics education: a case of more haste less speed. Physics Education, 28, 209–211.

    Article  Google Scholar 

  • Patton, M. Q. (1980). Qualitative evaluation methods. Beverly Hills, CA: Sage Publications.

    Google Scholar 

  • Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10, 1393–1414.

    Article  Google Scholar 

  • Redish, E. F. (2005, August 21-26). Problem solving and the use of math in physics courses. In World view on physics education in 2005: Focusing on change. Delhi, India.

    Google Scholar 

  • Redish, E. F., & Kuo, E. (2015). Language of physics, language of math: Disciplinary culture and dynamic epistemology. Science & Education, 24, 561–590. doi:10.1007/s11191-015–9749-7

    Article  Google Scholar 

  • Sherin, B. L. (2010). How students understand physics equations. Cognition and Instruction, 19(4), 479–541. doi:10.1207/S1532690XCI1904

    Article  Google Scholar 

  • Storm, D., Kemeny, V., Lehrer, R., & Forman, E. (2001). Visualising the emergent structure of children’s mathematical argument. Cognitive Science, 25, 733–773.

    Article  Google Scholar 

  • Teasley, S. D. (1995). The role of talk in children’s peer collaborations. Developmental Psychology, 3, 207–220.

    Article  Google Scholar 

  • Tuminaro, J. (2004). A cognitive framework for analyzing and describing introductory students’ use and understanding of mathematics in physics. Dissertation Abstracts International, 65(02B), 786.

    Google Scholar 

  • Viennot, L. (2004). Reasoning in physics. The part of common sense. New York, NY: Kluwer Academic Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalliopi Meli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meli, K., Zacharos, K. & Koliopoulos, D. The Integration of Mathematics in Physics Problem Solving: A Case Study of Greek Upper Secondary School Students. Can J Sci Math Techn 16, 48–63 (2016). https://doi.org/10.1080/14926156.2015.1119335

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926156.2015.1119335

Navigation