Skip to main content

Advertisement

Log in

Integrating Science Curricula in the Middle School: Utilizing Historical Perspectives

  • Article
  • Published:
Canadian Journal of Science, Mathematics and Technology Education Aims and scope Submit manuscript

Abstract

Science curriculum outcomes at the middle school level are typically associated with the decontextualized science found in textbooks and teacher resources. However, the typical middle years classroom with a single teacher is an ideal setting for an integrated approach to learning science in the context of social studies, language arts, art, and other subject areas. In this paper, we describe the first phase of a three-phase integrated curriculum project. The curriculum uses an historical perspective, narratives, and a student-centred approach to create materials that integrate the Grade 5 Science weather cluster with the Grade 5 Social Studies unit on the Canadian fur trade. Risk factors that contribute to inadequate science teaching and learning are identified and several protective factors that contribute to teacher efficacy are advanced.

Résumé

Les résultats des curriculums scientifiques au 1er cycle du secondaire sont normalement liés aux contenus dvcontextualisés qu’on trouve dans le matériel et les ressources pedagogiques disponibles. Toutefois, la classe normale de ce niveau, qui n’a qu’un seul enseignant, constitue un contexte id’al pour une approche intvgrée où I’apprentissage des sciences se fait dans un cadre comprenant également les sciences sociales, le langage, les arts et d’autres matières scolaires. Dans cet article, nous présentons la première phase d’un projet de curriculum intégré à trois étapes. Ce curriculum se fonde sur une perspective historique, sur le récit narratif ainsi que sur une approche centrée sur l’étudiant pour créer du matériel pédagogique qui intègre le programme d’études scientifiques de cinquieme année sur le climat avec le programme d’études sociales de la meme annee sur la traite des fourrures au Canada. Nous analysons certains facteurs de risque susceptibles de nuire à I’enseignement et a I’apprentissage des sciences, de même que plusieurs facteurs qui au contraire favorisent un enseignement efficace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beane, J. (1995). Toward a coherent curriculum. Alexandria, VA: Association for Supervision and Curriculum Development.

    Google Scholar 

  • Bronfenbrenner, U. (1979). The ecology of human development: Experiments by nature and design. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Bronfenbrenner, U. (1995). Developmental ecology through space and time: A future perspective. In P. Moen, G.H. Elder & K. Luscher, (Eds.), Examining lives in context: Perspectives on the ecology of human development, (pp. 619–647). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Bronfenbrenner, U. (1997). Ecological models of human development. In M. Gauvain, & M. Cole,, (Eds.), Readings on the development of children (2nd ed., pp. 37–43). New York: W.H. Freeman and Co.

    Google Scholar 

  • Carson, R.N. (1997). ‘Why science education alone is not enough.’ Interchange, 28(2–3):109-120.

    Google Scholar 

  • Chan, D.W. (2006). Emotional intelligence and components of burnout among Chinese secondary school teachers in Hong Kong. Teaching and Teacher Education: An International Journal of Research and Studies, 22(8), 1042–1054.

    Article  Google Scholar 

  • Council of Ministers of Education, Canada. (1997). Common framework of science learning outcomes K to 12: Pan-Canadian protocol for collaboration on school curriculum. Toronto, ON: Council of Ministers of Education.

    Google Scholar 

  • Czerniak, C.M., Weber, Jr. W.B., Sandmann, A., & Ahem, J. (1999). A literature review of science and mathematics integration. School Science and Mathematics, 99(8), 421–430.

    Article  Google Scholar 

  • Drake, S. (1998). Creating integrated curriculum: Proven ways to increase student learning. Thousand Oaks, CA: Corwin.

    Google Scholar 

  • Galili, I., & Hazan, A. (2001). The effect of a history-based course in optics on students’ views about science. Science & Education, 10, 7–32.

    Article  Google Scholar 

  • Hanson, A.M. (2006). No child left behind: High-stakes testing and teacher burnout in urban elementary schools. (Doctoral dissertation. University of Phoenix, 2006). Retrieved 24 February, 2007 from ERIC Document Reproduction Service No. ED 493 443.

    Google Scholar 

  • Hubisz, J. (2003, May). Middle school texts don’t make the Grade. Physics Today. 50–54.

    Google Scholar 

  • Jackson, L. & Rothmann, S. (2005). Work-related well-being of educators in a district of the North-west province. Perspectives in Education, 23(3), 107–122.

    Google Scholar 

  • Jepson, E., & Forrest, S. (2006). Individual contributory factors in teacher stress: The role of advancement striving and occupational commitment. British Journal of Educational Psychology, 76(1), 183–197.

    Article  Google Scholar 

  • Kesidou, S., & Roseman, J.E. (2002). How well do middle school science programs measure up? Findings from Project 206I’s curriculum review. Journal of Research in Science Teaching, 39, 522–549.

    Article  Google Scholar 

  • Kirk, M., Matthews, C.E., & Kurtts, S. (2001, December). The trouble with textbooks. The Science Teacher. 42–45.

    Google Scholar 

  • Klassen, S. (2006a). A theoretical framework for contextual science teaching. Interchange, 37(1-2), 31–62.

    Article  Google Scholar 

  • Klassen, S. (2006b). Contextual assessment in science education: Background, issues, and policy. Science Education, 90, 820–851.

    Article  Google Scholar 

  • Kubli, F. (1999). Historical aspects in physics teaching: Using Galileo’s work in a new Swiss project. Science & Education, 8, 137–150.

    Article  Google Scholar 

  • Lauritzen, C. & Jaeger, M. (1997). The narrative curriculum: Integrating learning through story. Albany, NY: Delmar.

    Google Scholar 

  • Luft, J., & Patterson, N. (2002). Bridging the gap: Supporting beginning science teachers. Journal of Science Teacher Education, 13(4), 267–282.

    Article  Google Scholar 

  • Manitoba Education and Training. (2000). Grades S to 8 Science: A Foundation for Implementation. Winnipeg, MB: Author.

    Google Scholar 

  • Manitoba Education, Citizenship and Youth. (2005). Grade 5 social studies: Peoples and stories of Canada to 1867: A foundation for implementation. Winnipeg, MB: Author.

    Google Scholar 

  • Matthews, M.R. (1994). Science teaching: The role of history and philosophy of science. New York: Routledge.

    Google Scholar 

  • Metz, D., Klassen, S., McMillan, B., Clough, M., & Olson, J. (2007). Building a foundation for the use of historical narratives. Science & Education, 16, 313–334.

    Article  Google Scholar 

  • Newman, W., Abell, S., Hubbard, P., McDonald, J., Otaala, J., & Martini, M. (2004). Dilemmas of teaching inquiry in elementary science methods. Journal of Science Teacher Education, 15(4), 257–279.

    Article  Google Scholar 

  • Roberts, J.K., & Henson, R.K. (2000, November). Self-efficacy teaching and knowledge instrument for science teachers (SETAKIST): A proposal for a new efficacy instrument. Paper presented at the annual meeting of the Mid-South Educational Research Association, Bowling Green, KY.

    Google Scholar 

  • Robertson, H. (2002). Tales from the jungle. Phi Delia Kappan, 84(3), 252–254.

    Article  Google Scholar 

  • Rutter, M., Champion, L., Quinton, D., Maughan, B., & Pickels, A. (1995). Understanding individual differences in environmental-risk exposure. In P. Moen, G.H. Elder, and K. Luscher,, (Eds.), Examining lives in context: Perspectives on the ecology of human development. (pp. 61–93). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Salanova, M., Llorens, S., Garcia-Renedo, M., Burriel, R., Breso, E., & Schaufeli, W. (2005). Toward a four-dimensional model of burnout: A multigroup factor-analytic study including depersonalization and cynicism. Educational and Psychological Measurement, 65(5), 807–819.

    Article  Google Scholar 

  • Stinner, A. (1995). Contextual settings, science stories, and large context problems: Toward a more humanistic science education. Science Education, 79(5), 555–581.

    Article  Google Scholar 

  • Stinner, A., McMillan, B., Metz, D., Jilek, J., & Klassen, S. (2003). The renewal of case studies in science education. Science & Education, 12(7), 617–643.

    Article  Google Scholar 

  • Tweney, R.D. (1992). Serial and parallel processing in scientific discovery. In R.N. Giere, (Ed.). Minnesota studies in the philosophy of science. Vol. XV: Congnitive models of science (pp. 77–88). Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Wandersee, J.H., & Roach, L.E. (1998). Interactive historical vignettes. In J.J. Mentzes, J.H. Wandersee, J.D. Novak,, (Eds.), Teaching science for understanding: A human constructivist view (pp. 281–323). San Diego, CA: Academic Press.

    Google Scholar 

  • Wood, T., & McCarthy, C. (2002). Understanding and preventing teacher burnout. (ERIC Document Reproduction Service No. ED477726).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metz, D., Klassen, S. & McMillan, B. Integrating Science Curricula in the Middle School: Utilizing Historical Perspectives. Can J Sci Math Techn 7, 401–416 (2007). https://doi.org/10.1080/14926150709556742

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14926150709556742

Navigation