Skip to main content

Advertisement

Log in

The cerebellum and sensorimotor coupling: Looking at the problem from the perspective of vestibular reflexes

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar modules process afferent information and deliver outputs relevant for both reflex and voluntary movements. The response of cerebellar modules to a given input depends on the whole array of signals impinging on them. Studies on vestibular reflexes indicate that the response of the cerebellar circuits to the vestibular input is modified by the integration of multiple visual, vestibular and somatosensory afferent signals. In this way the cerebellum slowly adapts these reflexes when they are not adequate to the behavioural condition and allows their fast modifications when the relative position of the body segments and that of the body in space are changed. Studies on voluntary movements indicate that the cerebellum is responsible for motor learning that consists of the development of new input-output associations. Several theoretical, anatomical and clinical studies are consistent with the hypothesis that the cerebellum allows the delivery of motor commands which vary according to the condition of the motor apparatus. Finally, the cerebellum could change the relation between visual information and aimed reaching movements according to the position of the eyes in the orbit and of the neck over the body. We propose that, due to the large expansion of its cortex, an important function of the cerebellum could be that of expanding the range of sensorimotor associations according to all the factors characterizing the behavioural condition. Indeed, following cerebellar lesion, learning is often lost, the movement results impaired and requires an increased attention. In the light of the recently discovered connections of the cerebellum with the rostral regions of the frontal lobe, it can be suggested that the ability of cerebellar circuits to modify the rules of input-output coupling according to a general context is a fundamental property allowing the cerebellum to control not only motor but also cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thach WT, Goodkin HP, Keating JG. The cerebellum and the adaptive coordination of movement. Annu Rev Neurosci. 1992;15:403–42.

    Article  PubMed  CAS  Google Scholar 

  2. MacKay WA. Murphy JT. Cerebellar modulation of reflex gain. Progr Neurobiol. 1979;13:361–417.

    Article  CAS  Google Scholar 

  3. Ito M. The cerebellum and neural control. New York: Raven Press, 1984.

    Google Scholar 

  4. Bloedel JR, Bracha V. On the cerebellum, cutaneomuscular reflexes, movement control and the elusive engrams of memory. Behav Brain Res. 1995;68:1–44.

    Article  PubMed  CAS  Google Scholar 

  5. Bloedel JR, Bracha V, Milak M, Shimansky YC. Cerebellar contributions to the acquisition and execution of learned reflex and volitional movements. Prog Brain Res. 1997;114:499–509.

    PubMed  CAS  Google Scholar 

  6. Pompeiano O. Functional organization of the cerebellar projections to the spinal cord. Progr Brain Res. 1967;25: 282–321.

    Article  CAS  Google Scholar 

  7. Anderson G, Oscarsson O. Climbing fiber microzones in cerebellar vermis and their projections to different groups of cells in the lateral vestibular nucleus. Exp Brain Res. 1978;32:565–79.

    Google Scholar 

  8. Apps R, Garwicz M. Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci. 2005;6:297–311.

    Article  PubMed  CAS  Google Scholar 

  9. Ito M. Cerebellar circuity as a neural machine. Prog Neurobiol. 2006;78:272–303.

    Article  PubMed  Google Scholar 

  10. Ramnani N. The Primate cortico-cerebellar system. Anatomy and function. Nature Rev Neurosci. 2006;7:511–22.

    Article  CAS  Google Scholar 

  11. Manzoni D. The cerebellum may implement the appropriate coupling of sensory inputs and motor responses: Evidence from vestibular physiology. Cerebellum. 2005;4:178–88.

    Article  PubMed  CAS  Google Scholar 

  12. De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ. Microcircuitry and function of the inferior olive. Trends Neurosci. 1998;21:391–400.

    Article  PubMed  Google Scholar 

  13. Sato Y, Kawasaki T. Identification of the Purkinje cell/ climbing fiber zone and its target neurons responsible for eyemovement control by the cerebellar flocculus. Brain Res Rev. 1991;16:39–64.

    Article  PubMed  CAS  Google Scholar 

  14. Albus JS. A theory of cerebellar function. Math Biosci. 1971;10:25–61.

    Article  Google Scholar 

  15. Blomnfield S, Marr D. How the cerebellum may be used. Nature. 1979;227:1224–8.

    Article  Google Scholar 

  16. Kawato M, Gomi H. A computational model of four regions in the cerebellum based on feedback-error learning. Biol Cibern. 1992;68:95–103.

    Article  CAS  Google Scholar 

  17. Houk JC, Buckingham JT, Barto AG. Models of the cerebellum and motor learning. Behav Brain Sci. 1996;19:368–83.

    Google Scholar 

  18. Welsh JP, Llinás R. Some organizing principles for the control of movement based on olivocerebellar physiology. Progr Brain Res. 1997;114:449–61.

    CAS  Google Scholar 

  19. Aizenman CD, Linden DJ. Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. J Neurophysiol. 1999;82:1697–1709.

    PubMed  CAS  Google Scholar 

  20. Bloedel JR. Functional heterogeneity with structural homogeneity: How does the cerebellum operate? Behav Brain Sci. 1992;15:666–78.

    Google Scholar 

  21. McDevitt CJ, Ebner TJ, Bloedel JR. Changes in the responses of cerebellar nuclear neurons associated with the climbing fiber response of Purkinje cells. Brain Res. 1987;425:14–24.

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong DM, Cogdell B, Harvey RJ. Discharge patterns of Purkinje cells in cats anaesthetized with alpha-chloralose. J Physiol (London). 1979;291:351–66.

    CAS  Google Scholar 

  23. Holdefer RN, Houk JC, Miller LE. Movement-related discharge in the cerebellar nuclei persists after local injection of GABA (A) antagonists. J Neurophysiol. 2005;93:35–43.

    Article  PubMed  CAS  Google Scholar 

  24. Middleton FA, Strick PL. Cerebellar output channels. Int Rev Neurobiol. 1997;41:61–82.

    PubMed  CAS  Google Scholar 

  25. Schmahmann JD, Pandya DN. The cerebrocerebellar system. Int Rev Neurobiol. 1997;41:31–60.

    PubMed  CAS  Google Scholar 

  26. Dum RP, Strick P. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  27. Stein JF, Glickstein M. Role of the cerebellum in visual guidance of movement. Physiol Rev. 1992;72:967–1017.

    PubMed  CAS  Google Scholar 

  28. Bantli H, Bloedel JR. Spinal input to the lateral cerebellum mediated by infratentorial structures. Neuroscience. 1977;2:555–68.

    Article  PubMed  CAS  Google Scholar 

  29. Van Neerven J, Pompeiano O, Collewijn H. Depression of the vestibulo-ocular and optokinetic responses by intrafloccular microinjection of GABA-A and GABA-B agonists in the rabbit. Arch Ital Biol. 1989;127:243–63.

    PubMed  Google Scholar 

  30. Fukushima K, Buharin EV, Fukushima J. Responses of floccular Purkinje cells to sinusoidal vertical rotation and effects of muscimol infusion into the flocculus in alert cats. Neurosci Res. 1993;17:297–305.

    Article  PubMed  CAS  Google Scholar 

  31. Barmack NH, Pettorossi VE. Effects of unilateral lesions of the flocculus on optokinetic and vestibuloocular reflexes of the rabbit. J Neurophysiol. 1985;53:481–96.

    PubMed  CAS  Google Scholar 

  32. Kurzan R, Straube A, Buttner U. The effect of muscimol micro-injections into the fastigial nucleus on the optokinetic response and the vestibulo-ocular reflex in the alert monkey. Exp Brain Res. 1993;94:252–60.

    Article  PubMed  CAS  Google Scholar 

  33. Walker MF. Zee DS. Cerebellar disease alters the axis of the high-acceleration vestibuloocular reflex. J Neurophysiol. 2005;94:3417–29.

    Article  PubMed  Google Scholar 

  34. Hirata Y, Highstein SM. Acute adaptation of the vestibuloocular reflex: Signal processing by floccular and ventral parafloccular Purkinje cells. J Neurophysiol. 2001;85: 2267–88.

    PubMed  CAS  Google Scholar 

  35. Van der Steen J, Simpson JI, Tan J. Functional and anatomic organization of three-dimensional eye movements in rabbit cerebellar flocculus. J Neurophysiol. 1994;72:31–46.

    PubMed  Google Scholar 

  36. Wilson VJ, Schor RH, Suzuki I, Park BR. Spatial organization of neck and vestibular reflexes acting on the forelimbs of the decerebrate cat. J Neurophysiol. 1986;55:514–26.

    PubMed  CAS  Google Scholar 

  37. Lindsay KW, Roberts TDM, Rosenberg JR. Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cats. J Physiol (Lond). 1976;261:583–601.

    CAS  Google Scholar 

  38. Manzoni D, Andre P, Pompeiano O. Changes in gain and spatiotemporal properties of the vestibulospinal reflex after injection of a GABA-A agonist in the cerebellar anterior vermis. J Vest Res. 1997;7:7–20.

    Article  CAS  Google Scholar 

  39. Pompeiano O, Andre P, Manzoni D. Spatiotemporal response properties of cerebellar Purkinje cells to animal displacement: A population analysis. Neuroscience. 1997;81:609–26.

    Article  PubMed  CAS  Google Scholar 

  40. Kleine JF, Guan Y, Kipiani E, Glonti L, Hoshi M, Buttner U. Trunk position influences vestibular responses of fastigial nucleus neurons in the alert monkey. J Neurophysiol. 2004;91:2090–100.

    Article  PubMed  CAS  Google Scholar 

  41. Shaikh AG, Meng H, Angelaki DE. Multiple reference frames for motion in the primate cerebellum. J Neurosci. 2004;24:4491–7.

    Article  PubMed  CAS  Google Scholar 

  42. Kasper J, Schor RH, Wilson VJ. Response of vestibular neurons to head rotation in vertical planes. I. Response to vestibular stimulation. J Neurophysiol. 1988;60:1753–64.

    PubMed  CAS  Google Scholar 

  43. Denoth F, Magherini PC, Pompeiano O, Stanojevic M. Responses of Purkinje cells of the cerebellar vermis to neck and macular vestibular inputs. Pflügers Arch. 1979;381: 87–98.

    Article  PubMed  CAS  Google Scholar 

  44. Bruschini L, Manzoni D, Pompeiano O. Postural responses of forelimb extensor to somatosensory signals elicited during wrist rotation: Interaction with vestibular reflexes. Pflügers Arch. 2002;443:548–57.

    Article  PubMed  CAS  Google Scholar 

  45. Bruschini L, Andre P, Pompeiano O, Manzoni D. Responses of Purkinje-cells of the cerebellar anterior vermis to stimulation of vestibular and somatosensory receptors. Neuroscience. 2006;142:235–45.

    Article  PubMed  CAS  Google Scholar 

  46. Schultheis LW, Robinson DA. Directional plasticity of the vestibuloocular reflex in the cat. Ann N Y Acad Sci. 1981;374:504–12.

    Article  PubMed  CAS  Google Scholar 

  47. Mc Elligott JG, Beeton P, Polk J. Effects of cerebellar inactivation by lidocaine microdyalisis on the vestibulo-ocular reflex in goldfish. J Neurophysiol. 1998;79:1186–94.

    Google Scholar 

  48. Nagao S, Kitazawa H. Effects of reversible shut down of the monkey flocculus on the retention of adaptation of the horizontal vestibular ocular reflex. Neuroscience. 2003;118:563–70.

    Article  PubMed  CAS  Google Scholar 

  49. Luebke AE, Robinson DA. Gain changes of the cat’s vestibulo-ocular reflex after flocculus deactivation. Exp Brain Res. 1994;98:379–90.

    Article  PubMed  CAS  Google Scholar 

  50. Pastor AM, De Cruz RR, Baker RC. Cerebellar role in adaptation of the goldfish vestibulo-ocular reflex. J Neurophysiol. 1994;72:632–50.

    Google Scholar 

  51. Nagao S. Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res. 1989;77:531–40.

    PubMed  CAS  Google Scholar 

  52. Andre P, d’Ascanio P, Manzoni D, Pompeiano O. Adaptive modifications of the cat’s vestibulospinal reflex durino sustained vestibular and neck stimulation. Pflügers Arch. 1993;425:469–81.

    Article  PubMed  CAS  Google Scholar 

  53. Andre P, Pompeiano O, Manzoni D. Adaptive modification of the cat vestibulospinal reflex during sustained and combined roll tilt of the whole animal and forepaw rotation: Cerebellar mechanisms. Neuroscience. 2005;132:811–22.

    Article  PubMed  CAS  Google Scholar 

  54. Belton T, McCrea RA. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation. J Neurophysiol. 2000;84:1599–613.

    PubMed  CAS  Google Scholar 

  55. Angelaki DE, Hess BJM. Inertial representation of angular motion in the vestibular system of the rhesus monkeys. I. Vestibulo-ocular reflex. J Neurophysiol. 1994;71:1222–49.

    PubMed  CAS  Google Scholar 

  56. Dai M, Raphan T, Cohen B. Spatial orientation of the vestibular system: Dependence of optokinetic after-nystagmus on gravity. J Neurophysiol. 1991;66:1422–39.

    PubMed  CAS  Google Scholar 

  57. Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann NY Acad Sci. 1999;28:94–122.

    Article  Google Scholar 

  58. Wearne S, Raphan T, Cohen B. Control of spatial orientation of the angular vestibuloocular reflex by the nodulus ans uvula. J Neurophysiol. 1998;79:2690–715.

    PubMed  CAS  Google Scholar 

  59. Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73:1729–51.

    PubMed  CAS  Google Scholar 

  60. Cohen B, John P, Yakushin SB, Buettner-Ennever J, Raphan T. The nodulus and uvula: source of cerebellar control of spatial orientation of the angular vestibulo-ocular reflex. Ann NY Acad Sci. 2002;978:28–45.

    Article  PubMed  Google Scholar 

  61. Britton TC, Day BL, Brown P, Rothwell JC, Thompson PD, Marsden CD. Postural electromyographic responses in the arm and leg following galvanic vestibular stimulation in man. Exp Brain Res. 1993;94:143–51.

    Article  PubMed  CAS  Google Scholar 

  62. Horak FB, MacPherson JM. Postural orientation and equilibrium. In: Rowell LB, Shepherd JT, editors. Handbook of physiology, Section 12: Exercise: Regulation and integration of multiple systems. New York: Oxford University Press, 1996. pp 255–92.

    Google Scholar 

  63. Lund S, Broberg C. Effects of different head positions on postural sway induced by a reproducible vestibular error signal. Acta Physiol Scand. 1983;117:307–09.

    PubMed  CAS  Google Scholar 

  64. Manzoni D, Pompeiano O, Andre P. Neck influences on the spatial properties of vestibulospinal reflex in decerebrate cats: Role of the cerebellar anterior vermis. J Vest Res. 1998;8:283–97.

    Article  CAS  Google Scholar 

  65. Manzoni D, Pompeiano O, Bruschini L, Andre P. Neck input modifies the reference frame for coding labyrinthine signals in the cerebellar vermis: A cellular analysis. Neuroscience. 1999;93:1095–107.

    Article  PubMed  CAS  Google Scholar 

  66. Barresi M, Bruschini L, Li Volsi G, Manzoni D. Horizontal rotation of the foreleg modifies vestibular responses of vermal P-cells. Pflügers Arch. in press.

  67. Mergner T, Huber W, Becker W. Vestibular-neck interaction and transformation of sensory coordinates. J Vest Res. 1997;7:347–67.

    Article  CAS  Google Scholar 

  68. Mergner T, Rosemeier T. Interaction of vestibular somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions a conceptual model. Brain Res Rev. 1998;28:118–35.

    Article  PubMed  CAS  Google Scholar 

  69. Manto MU, Bosse P. Directional tuning of speed-related activation for reaching in the vertical plane in cerebellar ataxia. Neurol Res. 2003;25:434–44.

    Article  PubMed  CAS  Google Scholar 

  70. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54:957–1006.

    PubMed  CAS  Google Scholar 

  71. Robinson FR, Fuchs AF. The role of the cerebellum in voluntary eye movements. Annu Rev Neurosci. 2001;24:981–1004.

    Article  PubMed  CAS  Google Scholar 

  72. Nezafat R, Shadmehr R, Holcomb HH. Long-term adaptation to dynamics of reaching movements: a PET study. Exp Brain Res. 2001;140:66–76.

    Article  PubMed  CAS  Google Scholar 

  73. Baizer JS, Kralj-Hans I, Glickstein M. Cerebellar lesions and prism adaptation in macaque monkeys. J Neurophysiol. 1999;81:1960–5.

    PubMed  CAS  Google Scholar 

  74. Weiner M, Hallet M, Funkenstein HH. Adaptation to lateral displacement of vision in patients with lesions of the central nervous system. Neurology. 1983;33:766–82.

    PubMed  CAS  Google Scholar 

  75. Martin TA, Keating JG, Goodkin HP, Bastian AJ, Thach WT. Throwing while looking trough prisms. I. Focal olivocerebellar lesions impair adaptation. Brain. 1996;119: 1183–98.

    Article  PubMed  Google Scholar 

  76. Ghilardi M, Ghez C, Dhawan V, Moeller J, Mentis M, Nakamura T, Antonini A, Eidelber, D. Patterns of regional brain activation associated with different forms of motor learning. Brain Res. 2000;871:127–45.

    Article  PubMed  CAS  Google Scholar 

  77. Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D. Differential cortical and subcortical activations in learning rotations and gains for reaching: A PET study. J. Neurophysiol. 2003;91:924–33.

    Article  PubMed  Google Scholar 

  78. Ebner TJ, Fu Q. What features of visually guided arm movements are encoded in the simple spike discharge of cerebellar Purkinje cells? Progr Brain Res. 1997;114:431–47.

    CAS  Google Scholar 

  79. Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153:239–45.

    Article  PubMed  Google Scholar 

  80. Roll R, Velay JL, Roll JP. Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activity. Exp Brain Res. 1991;85:423–31.

    Article  PubMed  CAS  Google Scholar 

  81. Pellionisz A, Llinás R. Tensorial approach to the geometry of brain function: Cerebellar coordination via a metric tensor. Neuroscience. 1980;5:1125–36.

    Article  PubMed  CAS  Google Scholar 

  82. Chan YS, Manzoni D, Pompeiano O. Response characteristics of cerebellar dentate and lateral cortex neurons to sinusoidal stimulation of neck and labyrinth receptors. Neuroscience. 1982;7:2993–3011.

    Article  PubMed  CAS  Google Scholar 

  83. Bastian AJ, Martin TA, Keating JG, Thach WT. Cerebellar ataxia: Abnormal control of interaction torques across multiple joints. J Neurophysiol. 1996;76: 492–509.

    PubMed  CAS  Google Scholar 

  84. Sainburg RL, Ghilardi MF, Poizner H, Ghez C. Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol. 1995;73:820–35.

    PubMed  CAS  Google Scholar 

  85. Fogassi L, Gallese V, di Pellegrino G, et al. Space coding by premotor cortex. Exp Brain Res. 1992;89:686–90.

    Article  PubMed  CAS  Google Scholar 

  86. Galletti C, Battaglia PP, Fattori P. Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res. 1993;96:221–9.

    Article  PubMed  CAS  Google Scholar 

  87. Brotchie PR, Andersen RA, Lawrence HS, Goodman S. Head position signals used by parietal neurons to encode locations of visual stimuli. Nature. 1995;375:232–5.

    Article  PubMed  CAS  Google Scholar 

  88. Snyder LH, Grieve KL, Brotchie P, Andersen RA. Separate body-and world referenced representations of visual space in parietal cortex. Nature. 1998;394:887–90.

    Article  PubMed  CAS  Google Scholar 

  89. Lacquaniti F, Caminiti R. Visuo-motor transformations for arm reaching. Eur J Neurosci. 1998;10:195–203.

    Article  PubMed  CAS  Google Scholar 

  90. Williams RW, Herrup K. The control of neuron number. Annu Rev Neurosci. 1988; 11:423–53.

    Article  PubMed  CAS  Google Scholar 

  91. Ito M. Movement and thought: Identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16:448–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Manzoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manzoni, D. The cerebellum and sensorimotor coupling: Looking at the problem from the perspective of vestibular reflexes. Cerebellum 6, 24–37 (2007). https://doi.org/10.1080/14734220601132135

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220601132135

Key words

Navigation