Skip to main content

Vestibular Perception: From Bench to Bedside

  • Chapter
  • First Online:
Advances in Translational Neuroscience of Eye Movement Disorders

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 652 Accesses

Abstract

Classic experiments over several decades examined the physiology and pathophysiology of a critical brainstem function called vestibulo-ocular reflex. These studies provided a wealth of information on how the brain, particularly the cerebellum and brainstem, computes the representation of our own motion in order to generate compensatory movements. Contemporary literature over last two decades started focusing on an equally important aspects of vestibular function – the motion perception and spatial orientation. From both physiological and computational standpoints, these studies further extended the application of cerebellar principles (for the control of vestibulo-ocular reflex) to thalamic and cortical function, emphasising on cerebello-cerebral connections. This chapter provides a concise review of the physiology and pathophysiology of vestibular perception and discusses seminal work from our laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, H., Kondo, T., Oouchida, Y., Suzukamo, Y., Fujiwara, S., & Izumi, S.-I. (2012). Prevalence and length of recovery of pusher syndrome based on cerebral hemispheric lesion side in patients with acute stroke. Stroke, 43, 1654–1656. https://doi.org/10.1161/STROKEAHA.111.638379.

    Article  PubMed  Google Scholar 

  • Aguirre, G. K., & D’Esposito, M. (1999). Topographical disorientation: A synthesis and taxonomy. Brain, 122(Pt 9), 1613–1628.

    PubMed  Google Scholar 

  • Akdal, G., Toydemir, H. E., Tanrıverdizade, T., & Halmagyi, G. M. (2017). Room tilt illusion: A symptom of both peripheral and central vestibular disorders. Acta Neurologica Belgica, 117(1), 363–365.

    PubMed  Google Scholar 

  • Alberts, B. B. G. T., de Brouwer, A. J., Selen, L. P. J., & Medendorp, W. P. (2016a). A Bayesian account of visuo-vestibular interactions in the rod-and-frame task. eneuro, ENEURO.0093-16.2016. https://doi.org/10.1523/ENEURO.0093-16.2016.

  • Alberts, B. B. G. T., Selen, L. P. J., Bertolini, G., Straumann, D., Medendorp, W. P., & Tarnutzer, A. A. (2016b). Dissociating vestibular and somatosensory contributions to spatial orientation. Journal of Neurophysiology, 116, 30–40. https://doi.org/10.1152/jn.00056.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Allum, J. H., Graf, W., Dichgans, J., & Schmidt, C. L. (1976). Visual-vestibular interactions in the vestibular nuclei of the goldfish. Experimental Brain Research, 26(5), 463–485.

    CAS  PubMed  Google Scholar 

  • Amarenco, P., Roullet, E., Hommel, M., et al. (1990). Infarction in the territory of the medial branch of the posterior inferior cerebellar artery. Journal of Neurology, Neurosurgery, and Psychiatry, 53, 731–735.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asai, M., Aoki, M., Hayashi, H., Yamada, N., Mizuta, K., & Ito, Y. (2009). Subclinical deviation of the subjective visual vertical in patients affected by a primary headache. Acta Oto-Laryngologica, 129, 30–35. https://doi.org/10.1080/00016480802032785.

    Article  PubMed  Google Scholar 

  • Asch, S. E., & Witkin, H. A. (1948). Studies in space orientation; perception of the upright with displaced visual fields. Journal of Experimental Psychology, 38, 325–337.

    CAS  PubMed  Google Scholar 

  • Aubert, H. (1861). Eine scheinbare bedeutende Drehung von Objecten bei Neigung des Kopfes nach rechts oder links. Archiv für pathologische Anatomie und Physiologie und für klinische Medicin, 20, 381–393.

    Google Scholar 

  • Baggio, J. A. O., Mazin, S. S. C., Alessio-Alves, F. F., Barros, C. G. C., Carneiro, A. A. O., Leite, J. P., et al. (2016). Verticality perceptions associate with postural control and functionality in stroke patients. PLoS One, 11, e0150754. https://doi.org/10.1371/journal.pone.0150754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baier, B., Eulenburg, P. z., Best, C., Geber, C., Müller-Forell, W., Birklein, F., et al. (2013). Posterior insular cortex – A site of vestibular–somatosensory interaction? Brain and Behavior, 3, 519–524. https://doi.org/10.1002/brb3.155.

  • Baier, B., Suchan, J., Karnath, H.-O., & Dieterich, M. (2012). Neural correlates of disturbed perception of verticality. Neurology, 78, 728–735. https://doi.org/10.1212/WNL.0b013e318248e544.

    Article  PubMed  Google Scholar 

  • Balaban, C. D. (2016). Chapter 3 – Neurotransmitters in the vestibular system. In J. M. Furman & T. Lempert (Eds.), Handbook of clinical neurology neuro-otology (pp. 41–55). Cambridge, MA: Elsevier. https://doi.org/10.1016/B978-0-444-63437-5.00003-0.

    Chapter  Google Scholar 

  • Baloh, R. W. (2003). Clinical practice. Vestibular neuritis. The New England Journal of Medicine, 348(11), 1027–1032.

    PubMed  Google Scholar 

  • Barbieri, G., Gissot, A.-S., Fouque, F., Casillas, J.-M., Pozzo, T., & Pérennou, D. (2008). Does proprioception contribute to the sense of verticality? Experimental Brain Research, 185, 545–552. https://doi.org/10.1007/s00221-007-1177-8.

    Article  PubMed  Google Scholar 

  • Barra, J., Benaim, C., Chauvineau, V., Ohlmann, T., Gresty, M., & Perennou, D. (2008). Are rotations in perceived visual vertical and body axis after stroke caused by the same mechanism? Stroke, 39, 3099–3101. https://doi.org/10.1161/STROKEAHA.108.515247.

    Article  PubMed  Google Scholar 

  • Barra, J., Marquer, A., Joassin, R., Reymond, C., Metge, L., Chauvineau, V., et al. (2010). Humans use internal models to construct and update a sense of verticality. Brain, 133, 3552–3563. https://doi.org/10.1093/brain/awq311.

    Article  PubMed  Google Scholar 

  • Barra, J., Pérennou, D., Thilo, K. V., Gresty, M. A., & Bronstein, A. M. (2012). The awareness of body orientation modulates the perception of visual vertical. Neuropsychologia, 50, 2492–2498. https://doi.org/10.1016/j.neuropsychologia.2012.06.021.

    Article  PubMed  Google Scholar 

  • Beevor, C. E. (1909). Remarks on paralysis of the movements of the trunk in hemiplegia, and the muscles which are affected. British Medical Journal, 1, 881.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bender, M., & Jung, R. (1948). Abweichungen der subjektiven optischen Vertikalen und Horizontalen bei Gesunden und Hirnverletzten. European Archives of Psychiatry and Clinical Neuroscience, 181, 193–212.

    Google Scholar 

  • Bense, S., Stephan, T., Yousry, T. A., Brandt, T., & Dieterich, M. (2001). Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). Journal of Neurophysiology, 85(2), 886–899.

    CAS  PubMed  Google Scholar 

  • Bergenius, J., & Perols, O. (1999). Vestibular neuritis: A follow-up study. Acta Otolaryngology, 119(8), 895–899.

    CAS  Google Scholar 

  • Bermúdez Rey, M. C., Clark, T. K., Wang, W., Leeder, T., Bian, Y., & Merfeld, D. M. (2016). Vestibular perceptual thresholds increase above the age of 40. Frontiers in Neurology, 7, 162. eCollection.

    PubMed  PubMed Central  Google Scholar 

  • Berthoz, A. (1997). Parietal and hippocampal contribution to topokinetic and topographic memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 352(1360), 1437–1448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berthoz, A., Israel, I., Georges-Francois, P., Grasso, R., & Tsuzuku, T. (1995). Spatial memory of body linear displacement: What is being stored? Science, 269, 95–98.

    CAS  PubMed  Google Scholar 

  • Bjerver, K., & Silfverskiöld, B. P. (1968). Lateropulsion and imbalance in Wallenberg’s syndrome. Acta Neurologica Scandinavica, 44, 91–100.

    CAS  PubMed  Google Scholar 

  • Blanke, O., Landis, T., Spinelli, L., & Seeck, M. (2004). Out-of-body experience and autoscopy of neurological origin. Brain, 127, 243–258. https://doi.org/10.1093/brain/awh040.

    Article  PubMed  Google Scholar 

  • Blanke, O., Ortigue, S., Landis, T., & Seeck, M. (2002). Neuropsychology: Stimulating illusory own-body perceptions. Nature, 419, 269–270.

    CAS  PubMed  Google Scholar 

  • Blanke, O., Perrig, S., Thut, G., Landis, T., & Seeck, M. (2000). Simple and complex vestibular responses induced by electrical cortical stimulation of the parietal cortex in humans. Journal of Neurology, Neurosurgery, and Psychiatry, 69(4), 553–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blanke, O., Slater, M., & Serino, A. (2015). Behavioral, neural, and computational principles of bodily self-consciousness. Neuron, 88, 145–166. https://doi.org/10.1016/j.neuron.2015.09.029.

    Article  CAS  PubMed  Google Scholar 

  • Bohannon, R. W. (1996). Ipsilateral pushing in stroke. Archives of Physical Medicine and Rehabilitation, 77, 524.

    CAS  PubMed  Google Scholar 

  • Böhmer, A., & Mast, F. (1999). Assessing otolith function by the subjective visual vertical. Annals of the New York Academy of Sciences, 871, 221–231.

    PubMed  Google Scholar 

  • Bonan, I. V., Hubeaux, K., Gellez-Leman, M. C., Guichard, J. P., Vicaut, E., & Yelnik, A. P. (2007). Influence of subjective visual vertical misperception on balance recovery after stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 78, 49–55. https://doi.org/10.1136/jnnp.2006.087791.

    Article  CAS  PubMed  Google Scholar 

  • Bonan, I. V., Leman, M. C., Legargasson, J. F., Guichard, J. P., & Yelnik, A. P. (2006). Evolution of subjective visual vertical perturbation after stroke. Neurorehabilitation and Neural Repair, 20, 484–491. https://doi.org/10.1177/1545968306289295.

    Article  CAS  PubMed  Google Scholar 

  • Bosco, G., Carrozzo, M., & Lacquaniti, F. (2008). Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation. The Journal of Neuroscience, 28, 12071–12084. https://doi.org/10.1523/JNEUROSCI.2869-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottini, G., Karnath, H. O., Vallar, G., Sterzi, R., Frith, C. D., Frackowiak, R. S., & Paulesu, E. (2001). Cerebral representations for egocentric space: Functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain, 124, 1182–1196.

    CAS  PubMed  Google Scholar 

  • Braem, B., Honoré, J., Rousseaux, M., Saj, A., & Coello, Y. (2014). Integration of visual and haptic informations in the perception of the vertical in young and old healthy adults and right brain-damaged patients. Neurophysiologie Clinique/Clinical Neurophysiology, 44, 41–48. https://doi.org/10.1016/j.neucli.2013.10.137.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, T., & Dieterich, M. (1994). Vestibular syndromes in the roll plane: Topographic diagnosis from brainstem to cortex. Annals of Neurology, 36, 337–347. https://doi.org/10.1002/ana.410360304.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, T., & Dieterich, M. (2000). Perceived vertical and lateropulsion: Clinical syndromes, localization, and prognosis. Neurorehabilitation and Neural Repair, 14, 1–12. https://doi.org/10.1177/154596830001400101.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, T., Dieterich, M., & Danek, A. (1994). Vestibular cortex lesions affect the perception of verticality. Annals of Neurology, 35, 403–412. https://doi.org/10.1002/ana.410350406.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, T., Strupp, M., & Dieterich, M. (2014). Towards a concept of disorders of “higher vestibular function”. Frontiers in Integrative Neuroscience, 8, 47. https://doi.org/10.3389/fnint.2014.00047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray, A., Subanandan, A., Isableu, B., Ohlmann, T., Golding, J. F., & Gresty, M. A. (2004). We are most aware of our place in the world when about to fall. Current Biology, 14, R609–R610. https://doi.org/10.1016/j.cub.2004.07.040.

    Article  CAS  PubMed  Google Scholar 

  • Bremmer, F., Klam, F., Duhamel, J. R., Ben Hamed, S., & Graf, W. (2002). Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). The European Journal of Neuroscience, 16(8), 1569–1586.

    PubMed  Google Scholar 

  • Brodsky, M. C., Donahue, S. P., Vaphiades, M., & Brandt, T. (2006). Skew deviation revisited. Survey of Ophthalmology, 51, 105–128. https://doi.org/10.1016/j.survophthal.2005.12.008.

    Article  PubMed  Google Scholar 

  • Bronstein, A. M. (1999). The interaction of otolith and proprioceptive information in the perception of verticality. The effects of labyrinthine and CNS disease. Annals of the New York Academy of Sciences, 871, 324–333.

    CAS  PubMed  Google Scholar 

  • Bronstein, A. M., Yardley, L., Moore, A. P., & Cleeves, L. (1996). Visually and posturally mediated tilt illusion in Parkinson’s disease and in labyrinthine defective subjects. Neurology, 47, 651–656.

    CAS  PubMed  Google Scholar 

  • Brookes, G. B., Gresty, M. A., Nakamura, T., & Metcalfe, T. (1993). Sensing and controlling rotational orientation in normal subjects and patients with loss of labyrinthine function. The American Journal of Otology, 14, 349–351.

    CAS  PubMed  Google Scholar 

  • Brooks, J. X., & Cullen, K. E. (2013). The primate cerebellum selectively encodes unexpected self-motion. Current Biology, 23(11), 947–955. https://doi.org/10.1016/j.cub.2013.04.029.

    Article  CAS  PubMed  Google Scholar 

  • Bury, N., & Bock, O. (2016). Role of gravitational versus egocentric cues for human spatial orientation. Experimental Brain Research, 234, 1013–1018. https://doi.org/10.1007/s00221-015-4526-z.

    Article  PubMed  Google Scholar 

  • Carriot, J., Cian, C., Paillard, A., Denise, P., & Lackner, J. R. (2011). Influence of multisensory graviceptive information on the apparent zenith. Experimental Brain Research, 208, 569–579. https://doi.org/10.1007/s00221-010-2505-y.

    Article  CAS  PubMed  Google Scholar 

  • Cazzato, V., Mian, E., Serino, A., Mele, S., & Urgesi, C. (2015). Distinct contributions of extrastriate body area and temporoparietal junction in perceiving one’s own and others’ body. Cognitive, Affective, & Behavioral Neuroscience, 15, 211–228. https://doi.org/10.3758/s13415-014-0312-9.

    Article  Google Scholar 

  • Ceyte, H., Cian, C., Trousselard, M., & Barraud, P.-A. (2009). Influence of perceived egocentric coordinates on the subjective visual vertical. Neuroscience Letters, 462, 85–88. https://doi.org/10.1016/j.neulet.2009.06.048.

    Article  CAS  PubMed  Google Scholar 

  • Cian, C., Raphel, C., & Barraud, P. A. (2001). The role of cognitive factors in the rod-and-frame effect. Perception, 30, 1427–1438. https://doi.org/10.1068/p3270.

    Article  CAS  PubMed  Google Scholar 

  • Clark, T. K., Newman, M. C., Oman, C. M., Merfeld, D. M., & Young, L. R. (2015). Modeling human perception of orientation in altered gravity. Frontiers in Systems Neuroscience, 9, 68. https://doi.org/10.3389/fnsys.2015.00068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clemens, I. A. H., Vrijer, M. D., Selen, L. P. J., Gisbergen, J. A. M. V., & Medendorp, W. P. (2011). Multisensory processing in spatial orientation: An inverse probabilistic approach. The Journal of Neuroscience, 31, 5365–5377. https://doi.org/10.1523/JNEUROSCI.6472-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clément, G., & Eckardt, J. (2005). Influence of the gravitational vertical on geometric visual illusions. Acta Astronautica, 56, 911–917.

    PubMed  Google Scholar 

  • Clément, G., Tilikete, C., & Courjon, J. H. (2008). Retention of habituation of vestibulo-ocular reflex and sensation of rotation in humans. Experimental Brain Research, 190, 307–315.

    PubMed  Google Scholar 

  • Colnat-Coulbois, S., Gauchard, G. C., Maillard, L., Barroche, G., Vespignani, H., Auque, J., et al. (2011). Management of postural sensory conflict and dynamic balance control in late-stage Parkinson’s disease. Neuroscience, 193, 363–369. https://doi.org/10.1016/j.neuroscience.2011.04.043.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, J. E., & Enns, J. T. (2006). Observer pitch and roll influence: The rod and frame illusion. Psychonomic Bulletin & Review, 13, 160–165.

    Google Scholar 

  • Cullen, K. E. (2018). Multisensory integration and the perception of self motion. Oxford Research Wncyclopedia of Neuroscience, 19. https://doi.org/10.1093/acrefore/9780190264086.013.91.

  • Dai, M. J., Curthoys, I. S., & Halmagyi, G. M. (1989). Linear acceleration perception in the roll plane before and after unilateral vestibular neurectomy. Experimental Brain Research, 77, 315–328.

    CAS  PubMed  Google Scholar 

  • Danells, C. J., Black, S. E., Gladstone, D. J., & McIlroy, W. E. (2004). Poststroke “Pushing”. Stroke, 35, 2873–2878. https://doi.org/10.1161/01.STR.0000147724.83468.18.

    Article  PubMed  Google Scholar 

  • Day, R. H., & Wade, N. J. (1968). Involvement of neck proprioceptive system in visual after-effect from prolonged head tilt. The Quarterly Journal of Experimental Psychology, 20, 290–293. https://doi.org/10.1080/14640746808400163.

    Article  CAS  PubMed  Google Scholar 

  • Day, R. H., & Wade, N. J. (1969). Mechanisms involved in visual orientation constancy. Psychological Bulletin, 71, 33.

    CAS  PubMed  Google Scholar 

  • De Renzi, E., Faglioni, P., & Scotti, G. (1971). Judgment of spatial orientation in patients with focal brain damage. Journal of Neurology, Neurosurgery, and Psychiatry, 34, 489–495.

    PubMed  PubMed Central  Google Scholar 

  • De Ridder, D., Van Laere, K., Dupont, P., Menovsky, T., & Van de Heyning, P. (2007). Visualizing out-of-body experience in the brain. The New England Journal of Medicine, 357, 1829–1833. https://doi.org/10.1056/NEJMoa070010.

    Article  PubMed  Google Scholar 

  • Dichgans, J., & Brandt, T. (1978). Visual-vestibular interaction: Effects on self-motion perception and postural control. In R. Held, H. W. Leibowitz, & H. L. Teuber (Eds.), Handbook of sensory physiology (Vol. VIII: Perception., pp. 755–804). Berlin: Springer.

    Google Scholar 

  • Dichgans, J., Diener, H. C., & Brandt, T. (1974). Optokinetic-graviceptive interaction in different head positions. Acta Oto-Laryngologica, 78, 391–398.

    CAS  PubMed  Google Scholar 

  • Dichgans, J., Held, R., Young, L. R., & Brandt, T. (1972). Moving visual scenes influence the apparent direction of gravity. Science, 178, 1217–1219.

    CAS  PubMed  Google Scholar 

  • Dieterich, M., Bense, S., Lutz, S., Drzezga, A., Stephan, T., Bartenstein, P., et al. (2003). Dominance for vestibular cortical function in the nondominant hemisphere. Cerebral Cortex, 13, 994–1007.

    CAS  PubMed  Google Scholar 

  • Dieterich, M., & Brandt, T. (1992). Wallenberg’s syndrome: Lateropulsion, cyclorotation, and subjective visual vertical in thirty-six patients. Annals of Neurology, 31, 399–408. https://doi.org/10.1002/ana.410310409.

    Article  CAS  PubMed  Google Scholar 

  • Dieterich, M., & Brandt, T. (1993). Ocular torsion and tilt of subjective visual vertical are sensitive brainstem signs. Annals of Neurology, 33, 292–299. https://doi.org/10.1002/ana.410330311.

    Article  CAS  PubMed  Google Scholar 

  • Dieterich, M., & Brandt, T. (2008). Functional brain imaging of peripheral and central vestibular disorders. Brain, 131, 2538–2552.

    PubMed  Google Scholar 

  • Dieterich, M., Obermann, M., & Celebisoy, N. (2016). Vestibular migraine: The most frequent entity of episodic vertigo. Journal of Neurology, 263, 82–89. https://doi.org/10.1007/s00415-015-7905-2.

    Article  CAS  PubMed Central  Google Scholar 

  • Disher, M. J., Telian, S. A., & Kemink, J. L. (1991). Evaluation of acute vertigo: Unusual lesions imitating vestibular neuritis. The American Journal of Otology, 12, 227–231.

    CAS  PubMed  Google Scholar 

  • Dolowitz, D. A., Henriksson, N. G., & Forssman, B. (1963). Laterotorsion: A vestibular spinal reflex. Laryngoscope, 73, 893–905.

    CAS  PubMed  Google Scholar 

  • Donaldson, P. H., Rinehart, N. J., & Enticott, P. G. (2015). Noninvasive stimulation of the temporoparietal junction: A systematic review. Neuroscience and Biobehavioral Reviews, 55, 547–572. https://doi.org/10.1016/j.neubiorev.2015.05.017.

    Article  PubMed  Google Scholar 

  • Dyde, R. T., Jenkin, M. R., & Harris, L. R. (2006). The subjective visual vertical and the perceptual upright. Experimental Brain Research, 173, 612–622. https://doi.org/10.1007/s00221-006-0405-y.

    Article  PubMed  Google Scholar 

  • Dyde, R. T., & Milner, A. D. (2002). Two illusions of perceived orientation: One fools all of the people some of the time; the other fools all of the people all of the time. Experimental Brain Research, 144, 518–527. https://doi.org/10.1007/s00221-002-1065-1.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R., Zilles, K. (2006). Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Human Brain Mapping, 27, 611–621. https://doi.org/10.1002/hbm.20205

  • Emri M. (2003). Cortical Projection of Peripheral Vestibular Signaling. Journal of Neurophysiology, 89, 2639–2646. https://doi.org/10.1152/jn.00599.2002

  • Fernandez, C., & Goldberg, J. M. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. Journal of Neurophysiology, 34(4), 661–675.

    CAS  PubMed  Google Scholar 

  • Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2011). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15(1), 146–154.

    PubMed  PubMed Central  Google Scholar 

  • Finkelstein, A., Ulanovsky, N., Tsodyks, M., & Aljadeff, J. (2018). Optimal dynamic coding by mixed-dimensionality neurons in the head-direction system of bats. Nature Communications, 9(1), 3590.

    PubMed  PubMed Central  Google Scholar 

  • Fiori, F., Candidi, M., Acciarino, A., David, N., & Aglioti, S. M. (2015). The right temporoparietal junction plays a causal role in maintaining the internal representation of verticality. Journal of Neurophysiology, 114, 2983–2990. https://doi.org/10.1152/jn.00289.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiori, F., David, N., & Aglioti, S. M. (2014). Processing of proprioceptive and vestibular body signals and self-transcendence in Ashtanga yoga practitioners. Frontiers in Human Neuroscience, 8, 734. https://doi.org/10.3389/fnhum.2014.00734.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedmann, G. (1970). The judgement of the visual vertical and horizontal with peripheral and central vestibular lesions. Brain, 93, 313–328.

    CAS  PubMed  Google Scholar 

  • Funk, J., Finke, K., Müller, H. J., Utz, K. S., & Kerkhoff, G. (2011). Visual context modulates the subjective vertical in neglect: Evidence for an increased rod-and-frame-effect. Neuroscience, 173, 124–134. https://doi.org/10.1016/j.neuroscience.2010.10.067.

    Article  CAS  PubMed  Google Scholar 

  • Furman, J. M., Marcus, D. A., & Balaban, C. D. (2013). Vestibular migraine: Clinical aspects and pathophysiology. The Lancet Neurology, 12, 706–715. https://doi.org/10.1016/S1474-4422(13)70107-8.

    Article  CAS  PubMed  Google Scholar 

  • Furman, J. M., Sparto, P. J., Soso, M., & Marcus, D. (2005). Vestibular function in migraine-related dizziness: A pilot study. Journal of Vestibular Research, 15, 327–332.

    PubMed  Google Scholar 

  • Gandor, F., Basta, D., Gruber, D., Poewe, W., & Ebersbach, G. (2016). Subjective visual vertical in PD patients with lateral trunk flexion. Parkinsons Disease, 2016, 7489105. https://doi.org/10.1155/2016/7489105.

    Article  CAS  Google Scholar 

  • Gentaz, E., Badan, M., Luyat, M., & Touil, N. (2002). The manual haptic perception of orientations and the oblique effect in patients with left visuo-spatial neglect. Neuroreport, 13, 327–331.

    PubMed  Google Scholar 

  • Gianna, C., Heimbrand, S., & Gresty, M. (1996). Thresholds for detection of motion direction during passive lateral whole-body acceleration in normal subjects and patients with bilateral loss of labyrinthine function. Brain Research Bulletin, 40(5–6), 443–447; discussion 448–9.

    CAS  PubMed  Google Scholar 

  • Gianna, C. C., Heimbrand, S., Nakamura, T., & Gresty, M. A. (1995). Thresholds for perception of lateral motion in normal subjects and patients with bilateral loss of vestibular function. Acta Oto-Laryngologica. Supplementum, 520(Pt 2), 343–346.

    PubMed  Google Scholar 

  • Glasauer, S., Amorim, M. A., Viaud-Delmon, I., & Berthoz, A. (2002). Differential effects of labyrinthine dysfunction on distance and direction during blindfolded walking of a triangular path. Experimental Brain Research, 145, 489–497.

    CAS  PubMed  Google Scholar 

  • Glasauer, S., Amorim, M. A., Vitte, E., & Berthoz, A. (1994). Goal-directed linear locomotion in normal and labyrinthine-defective subjects. Experimental Brain Research, 98(2), 323–335.

    CAS  PubMed  Google Scholar 

  • Goto, F., Kobayashi, H., Saito, A., Hayashi, Y., Higashino, K., Kunihiro, T., et al. (2003). Compensatory changes in static and dynamic subjective visual vertical in patients following vestibular schwanoma surgery. Auris Nasus Larynx, 30, 29–33.

    PubMed  Google Scholar 

  • Graybiel, A., Miller, E. F., Newsom, B. D., & Kennedy, R. S. (1968). The effect of water immersion on perception of the oculogravic illusion in normal and labyrinthine-defective subjects. Acta Oto-Laryngologica, 65, 599–610.

    CAS  PubMed  Google Scholar 

  • Green, A. M., Shaikh, A. G., & Angelaki, D. E. (2005). Sensory vestibular contributions to constructing internal models of self-motion. Journal of Neural Engineering, 2, S164–S179.

    PubMed  Google Scholar 

  • Groen, E. L., Jenkin, H. L., & Howard, I. P. (2002). Perception of self-tilt in a true and illusory vertical plane. Perception, 31, 1477–1490. https://doi.org/10.1068/p3330.

    Article  PubMed  Google Scholar 

  • Guedry, F. E., Jr. (1974). Psychophysics of vestibular sensation. In H. H. Kornhuber (Ed.), Handbook of sensory physiology (Vol. VI, Pt 2., pp. 3–154). Berlin: Springer.

    Google Scholar 

  • Guerraz, M., Poquin, D., & Ohlmann, T. (1998). The role of head-centric spatial reference with a static and kinetic visual disturbance. Perception & Psychophysics, 60, 287–295.

    CAS  Google Scholar 

  • Guerraz, M., Yardley, L., Bertholon, P., Pollak, L., Rudge, P., Gresty, M. A., et al. (2001). Visual vertigo: Symptom assessment, spatial orientation and postural control. Brain, 124, 1646–1656.

    CAS  PubMed  Google Scholar 

  • Guldin, W. O., & Grüsser, O. J. (1998). Is there a vestibular cortex? Trends in Neurosciences, 21, 254–259.

    CAS  PubMed  Google Scholar 

  • Grüsser, O. J., Pause, M., & Schreiter, U. (1990a). Localization and responses of neurones in the parieto-insular vestibular cortex of awake mon-keys (Macaca fascicularis). The Journal of Physiology, 430, 537–557.

    PubMed  PubMed Central  Google Scholar 

  • Grüsser, O. J., Pause, M., & Schreiter, U. (1990b). Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): Visual and neck receptor responses. The Journal of Physiology, 430, 559–583.

    PubMed  PubMed Central  Google Scholar 

  • Hafström, A., Fransson, P.-A., Karlberg, M., & Magnusson, M. (2004). Idiosyncratic compensation of the subjective visual horizontal and vertical in 60 patients after unilateral vestibular deafferentation. Acta Oto-Laryngologica, 124, 165–171.

    PubMed  Google Scholar 

  • Hagström, L., Hörnsten, G., & Silfverskiöld, B. P. (1969). Oculostatic and visual phenomena occurring in association with Wallenberg's syndrome. Acta Neurologica Scandinavica, 45(5), 568–582.

    PubMed  Google Scholar 

  • Haji-Khamneh, B., & Harris, L. R. (2010). How different types of scenes affect the Subjective Visual Vertical (SVV) and the Perceptual Upright (PU). Vision Research, 50, 1720–1727. https://doi.org/10.1016/j.visres.2010.05.027.

    Article  PubMed  Google Scholar 

  • Hansen, K. A., Chu, C., Dickinson, A., Pye, B., Weller, J. P., & Ungerleider, L. G. (2015). Spatial selectivity in the temporoparietal junction, inferior frontal sulcus, and inferior parietal lobule. Journal of Vision, 15, 15–15. https://doi.org/10.1167/15.13.15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henn, V., Young, L. R., & Finley, C. (1974). Vestibular nucleus units in alert monkeys are also influenced by moving visual fields. Brain Research, 71(1), 144–149.

    CAS  PubMed  Google Scholar 

  • Hörnsten, G. (1974). Wallenberg's syndrome. I. General symptomatology, with special reference to visual disturbances and imbalance. Acta Neurologica Scandinavica, 50(4), 434–446.

    PubMed  Google Scholar 

  • Horak, F. B., Shupert, C. L., & Mirka, A. (1989). Components of postural dyscontrol in the elderly: A review. Neurobiology of Aging, 10, 727–738.

    CAS  PubMed  Google Scholar 

  • Horii, A., Okumura, K., Kitahara, T., & Kubo, T. (2006). Intracranial vertebral artery dissection mimicking acute peripheral vertigo. Acta Oto-Laryngologica, 126, 170–173.

    PubMed  Google Scholar 

  • Howard, I. P. (1982). Human visual orientation. New York: Wiley.

    Google Scholar 

  • Howard, I. P., & Childerson, L. (1994). The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception, 23, 753–762. https://doi.org/10.1068/p230753.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. Y., & Yu, Y. L. (1985). Small cerebellar strokes may mimic labyrinthine lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 48, 263–265.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igelström, K. M., & Graziano, M. S. A. (2017). The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia, 105, 70–83. https://doi.org/10.1016/j.neuropsychologia.2017.01.001.

    Article  PubMed  Google Scholar 

  • Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., & Lacquaniti, F. (2005). Representation of visual gravitational motion in the human vestibular cortex. Science, 308, 416–419. https://doi.org/10.1126/science.1107961.

    Article  CAS  PubMed  Google Scholar 

  • Ionta, S., Heydrich, L., Lenggenhager, B., Mouthon, M., Fornari, E., Chapuis, D., et al. (2011). Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron, 70, 363–374. https://doi.org/10.1016/j.neuron.2011.03.009.

    Article  CAS  PubMed  Google Scholar 

  • Isableu, B., Gueguen, M., Fourré, B., Giraudet, G., & Amorim, M.-A. (2008). Assessment of visual field dependence: Comparison between the mechanical 3D rod-and-frame test developed by Oltman in 1968 with a 2D computer-based version. Journal of Vestibular Research, 18, 239–247.

    PubMed  Google Scholar 

  • Isableu, B., Ohlmann, T., Cremieux, J., & Amblard, B. (1997). Selection of spatial frame of reference and postural control variability. Experimental Brain Research, 114, 584–589.

    CAS  PubMed  Google Scholar 

  • Jacobson, G. P., & McCaslin, D. L. (2003). Agreement between functional and electrophysiologic measures in patients with unilateral peripheral vestibular system impairment. Journal of the American Academy of Audiology, 14(5), 231–238.

    PubMed  Google Scholar 

  • Jáuregui Renaud, K. (2015). Vestibular function and depersonalization/derealization symptoms. Multisensory Research, 28, 637–651. https://doi.org/10.1163/22134808-00002480.

    Article  PubMed  Google Scholar 

  • Jenkin, H. L., Dyde, R. T., Jenkin, M. R., Howard, I. P., & Harris, L. R. (2003). Relative role of visual and non-visual cues in determining the direction of “up”: Experiments in the York tilted room facility. Journal of Vestibular Research, 13, 287–293.

    CAS  PubMed  Google Scholar 

  • Jenkin, H. L., Jenkin, M. R., Dyde, R. T., & Harris, L. R. (2004). Shape-from-shading depends on visual, gravitational, and body-orientation cues. Perception, 33, 1453–1461. https://doi.org/10.1068/p5285.

    Article  PubMed  Google Scholar 

  • Johannsen, L., Fruhmann Berger, M., & Karnath, H.-O. (2006). Subjective visual vertical (SVV) determined in a representative sample of 15 patients with pusher syndrome. Journal of Neurology, 253, 1367–1369. https://doi.org/10.1007/s00415-006-0216-x.

    Article  PubMed  Google Scholar 

  • Kahane, P., Hoffmann, D., Minotti, L., & Berthoz, A. (2003). Reappraisal of the human vestibular cortex by cortical electrical stimulation study. Annals of Neurology, 54(5), 615–624.

    PubMed  Google Scholar 

  • Kammerlind, A. S., Ledin, T. E., Skargren, E. I., & Odkvist, L. M. (2005). Long-term follow-up after acute unilateral vestibular loss and comparison between subjects with and without remaining symptoms. Acta Oto-Laryngologica, 125(9), 946–953.

    PubMed  Google Scholar 

  • Kandemir, A., Çelebisoy, N., & Köse, T. (2014). Perception of verticality in patients with primary headache disorders. The Journal of International Advanced Otology, 10, 138–143. https://doi.org/10.5152/iao.2014.25.

    Article  Google Scholar 

  • Kaptein, R. G., & Van Gisbergen, J. A. M. (2004). Interpretation of a discontinuity in the sense of verticality at large body tilt. Journal of Neurophysiology, 91, 2205–2214. https://doi.org/10.1152/jn.00804.2003.

    Article  PubMed  Google Scholar 

  • Karmali, F., Bermúdez Rey, M. C., Clark, T. K., Wang, W., & Merfeld, D. M. (2017). Multivariate analyses of balance test performance, vestibular thresholds, and age. Frontiers in Neurology, 8, 578. https://doi.org/10.3389/fneur.2017.00578. eCollection 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karmali, F., Lim, K., & Merfeld, D. M. (2014). Visual and vestibular perceptual thresholds each demonstrate better precision at specific frequencies and also exhibit optimal integration. Journal of Neurophysiology, 111(12), 2393–2403. https://doi.org/10.1152/jn.00332.2013.

    Article  PubMed  Google Scholar 

  • Karnath, H.-O., & Broetz, D. (2003). Understanding and treating “pusher syndrome”. Physical Therapy, 83, 1119–1125.

    PubMed  Google Scholar 

  • Karnath, H.-O., & Dieterich, M. (2006). Spatial neglect--a vestibular disorder? Brain, 129, 293–305. https://doi.org/10.1093/brain/awh698.

    Article  PubMed  Google Scholar 

  • Karnath, H.-O., Ferber, S., & Dichgans, J. (2000). The origin of contraversive pushing Evidence for a second graviceptive system in humans. Neurology, 55, 1298–1304. https://doi.org/10.1212/WNL.55.9.1298.

    Article  CAS  PubMed  Google Scholar 

  • Karnath, H.-O., & Rorden, C. (2012). The anatomy of spatial neglect. Neuropsychologia, 50, 1010–1017. https://doi.org/10.1016/j.neuropsychologia.2011.06.027.

    Article  PubMed  Google Scholar 

  • Kaski, D., Quadir, S., Nigmatullina, Y., Malhotra, P. A., Bronstein, A. M., & Seemungal, B. M. (2016). Temporoparietal encoding of space and time during vestibular-guided orientation. Brain, 139, 392–403. https://doi.org/10.1093/brain/awv370.

    Article  PubMed  Google Scholar 

  • Kerkhoff, G. (1999). Multimodal spatial orientation deficits in left-sided visual neglect. Neuropsychologia, 37, 1387–1405. https://doi.org/10.1016/S0028-3932(99)00031-7.

    Article  CAS  PubMed  Google Scholar 

  • Kerkhoff, G., & Zoelch, C. (1998). Disorders of visuospatial orientation in the frontal plane in patients with visual neglect following right or left parietal lesions. Experimental Brain Research, 122, 108–120. https://doi.org/10.1007/s002210050497.

    Article  CAS  PubMed  Google Scholar 

  • Kheradmand, A., Gonzalez, G., Otero-Millan, J., & Lasker, A. (2016). Visual perception of upright: Head tilt, visual errors and viewing eye. Journal of Vestibular Research, 25, 201–209. https://doi.org/10.3233/VES-160565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kheradmand, A., Lasker, A., & Zee, D. S. (2015). Transcranial magnetic stimulation (TMS) of the supramarginal gyrus: A window to perception of upright. Cerebral Cortex, 25, 765–771. https://doi.org/10.1093/cercor/bht267.

    Article  PubMed  Google Scholar 

  • Kheradmand, A., & Winnick, A. (2017). Perception of upright: Multisensory convergence and the role of temporo-parietal cortex. Frontiers in Neurology, 8. https://doi.org/10.3389/fneur.2017.00552.

  • Klam, F., & Graf, W. (2003). Vestibular response kinematics in posterior parietal cortex neurons of macaque monkeys. The European Journal of Neuroscience, 18(4), 995–1010.

    PubMed  Google Scholar 

  • Kupferberg, A., Glasauer, S., Stein, A., & Brandt, T. (2009). Influence of uninformative visual cues on gravity perception. Annals of the New York Academy of Sciences, 1164, 403–405. https://doi.org/10.1111/j.1749-6632.2009.03851.x.

    Article  PubMed  Google Scholar 

  • Lacquaniti, F., Bosco, G., Indovina, I., La Scaleia, B., Maffei, V., Moscatelli, A., et al. (2013). Visual gravitational motion and the vestibular system in humans. Frontiers in Integrative Neuroscience, 7. https://doi.org/10.3389/fnint.2013.00101.

  • Lechner-Steinleitner, S. (1978). Interaction of labyrinthine and somatoreceptor inputs as determinants of the subjective vertical. Psychological Research, 40, 65–76.

    CAS  PubMed  Google Scholar 

  • Lee, H., & Cho, Y. W. (2004). A case of isolated nodulus infarction presenting as a vestibular neuritis. Journal of the Neurological Sciences, 221, 117–119.

    PubMed  Google Scholar 

  • Lee, H., Sohn, S. I., Cho, Y. W., Lee, S. R., Ahn, B. H., Park, B. R., & Baloh, R. W. (2006). Cerebellar infarction presenting isolated vertigo: Frequency and vascular topographical patterns. Neurology, 67(7), 1178–1183.

    CAS  PubMed  Google Scholar 

  • Lee, H., Yi, H. A., Cho, Y. W., Sohn, C. H., Whitman, G. T., Ying, S., & Baloh, R. W. (2003). Nodulus infarction mimicking acute peripheral vestibulopathy. Neurology, 60, 1700–1702.

    CAS  PubMed  Google Scholar 

  • Lee, H. (2014). Isolated vascular vertigo. Journal of Stroke, 16(3), 124–130.

    PubMed  PubMed Central  Google Scholar 

  • Leigh, R. J., & Zee, D. S. (2015). The neurology of eye movements. New York: Oxford Univ Press.

    Google Scholar 

  • Lempert, T., Olesen, J., Furman, J., Waterston, J., Seemungal, B., Carey, J., et al. (2012). Vestibular migraine: diagnostic criteria. Journal of Vestibular Research, 22, 167.

    PubMed  Google Scholar 

  • Lester, B. D., & Dassonville, P. (2014). The role of the right superior parietal lobule in processing visual context for the establishment of the egocentric reference frame. Journal of Cognitive Neuroscience, 26, 2201–2209. https://doi.org/10.1162/jocn_a_00636.

    Article  PubMed  Google Scholar 

  • Lewis, R. F., Priesol, A. J., Nicoucar, K., Lim, K., & Merfeld, D. M. (2011). Dynamic tilt thresholds are reduced in vestibular migraine. Journal of Vestibular Research: Equilibrium & Orientation, 21, 323.

    Google Scholar 

  • Lipshits, M., Bengoetxea, A., Cheron, G., & McIntyre, J. (2005). Two reference frames for visual perception in two gravity conditions. Perception, 34, 545–555. https://doi.org/10.1068/p5358.

    Article  PubMed  Google Scholar 

  • Lopez, C., Bachofner, C., Mercier, M., & Blanke, O. (2009). Gravity and observer’s body orientation influence the visual perception of human body postures. Journal of Vision, 9, 1–1. https://doi.org/10.1167/9.5.1.

    Article  PubMed  Google Scholar 

  • Lopez, C., & Blanke, O. (2011). The thalamocortical vestibular system in animals and humans. Brain Research Reviews, 67, 119–146.

    PubMed  Google Scholar 

  • Lopez, C., Blanke, O., & Mast, F. W. (2012). The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience, 212, 159–179.

    CAS  PubMed  Google Scholar 

  • Lopez, C., Halje, P., & Blanke, O. (2008a). Body ownership and embodiment: Vestibular and multisensory mechanisms. Neurophysiologie Clinique/Clinical Neurophysiology, 38, 149–161. https://doi.org/10.1016/j.neucli.2007.12.006.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Lacour, M., Ahmadi, A. E., Magnan, J., & Borel, L. (2007). Changes of visual vertical perception: A long-term sign of unilateral and bilateral vestibular loss. Neuropsychologia, 45, 2025–2037. https://doi.org/10.1016/j.neuropsychologia.2007.02.004.

    Article  PubMed  Google Scholar 

  • Lopez, C., Lacour, M., Léonard, J., Magnan, J., & Borel, L. (2008b). How body position changes visual vertical perception after unilateral vestibular loss. Neuropsychologia, 46, 2435–2440. https://doi.org/10.1016/j.neuropsychologia.2008.03.017.

    Article  PubMed  Google Scholar 

  • Lopez, C., Lacour, M., Magnan, J., & Borel, L. (2006). Visual field dependence-independence before and after unilateral vestibular loss. Neuroreport, 17, 797–803. https://doi.org/10.1097/01.wnr.0000221843.58373.c8.

    Article  PubMed  Google Scholar 

  • Lobel, E., Kleine, J. F., Le Bihan D., Leroy-Willig, A., Berthoz A. (1998). Functional MRI of galvanic vestibular stimulation. Journal of Neurophysiology, 80, 2699–2709.

    Google Scholar 

  • Mansfield, A., Fraser, L., Rajachandrakumar, R., Danells, C. J., Knorr, S., & Campos, J. (2015). Is perception of vertical impaired in individuals with chronic stroke with a history of “pushing”? Neuroscience Letters, 590, 172–177. https://doi.org/10.1016/j.neulet.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  • Mast, F., & Jarchow, T. (1996). Perceived body position and the visual horizontal. Brain Research Bulletin, 40, 393–397; discussion 397–398.

    CAS  PubMed  Google Scholar 

  • Mast, F. W. (2000). Human perception of verticality: Psychophysical experiments on the centrifuge and their neuronal implications. Japanese Psychological Research, 42, 194–206. https://doi.org/10.1111/1468-5884.00146.

    Article  Google Scholar 

  • McKenna, G. J., Peng, G. C. Y., & Zee, D. S. (2004). Neck muscle vibration alters visually perceived roll in normals. Journal of the Association for Research in Otolaryngology, 5, 25–31. https://doi.org/10.1007/s10162-003-4005-2.

    Article  PubMed  Google Scholar 

  • Meng, H., May, P. J., Dickman, J. D., & Angelaki, D. E. (2007). Vestibular signals in primate thalamus: Properties and origins. The Journal of Neuroscience, 27, 13590–13602.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikellidou, K., Cicchini, G. M., Thompson, P. G., & Burr, D. C. (2015). The oblique effect is both allocentric and egocentric. Journal of Vision, 15, 24. https://doi.org/10.1167/15.8.24.

    Article  PubMed  Google Scholar 

  • Mittelstaedt, H. (1983). A new solution to the problem of the subjective vertical. Naturwissenschaften, 70, 272–281. https://doi.org/10.1007/BF00404833.

    Article  CAS  PubMed  Google Scholar 

  • Mittelstaedt, H. (1986). The subjective vertical as a function of visual and extraretinal cues. Acta Psychologica, 63, 63–85.

    CAS  PubMed  Google Scholar 

  • Mittelstaedt, M. L., & Mittelstaedt, H. (1980). Homing by path integration in a mammal. Naturwissenschaften, 67, 566–567.

    Google Scholar 

  • Müller, G. (1916). Über das Aubertsche Phänomen. Z Sinnesphysiol, 49, 109–246.

    Google Scholar 

  • Müller, J. A., Bockisch, C. J., & Tarnutzer, A. A. (2016). Spatial orientation in patients with chronic unilateral vestibular hypofunction is ipsilesionally distorted. Clinical Neurophysiology, 127, 3243–3251. https://doi.org/10.1016/j.clinph.2016.07.010.

    Article  PubMed  Google Scholar 

  • Nigmatullina, Y., Hellyer, P. J., Nachev, P., Sharp, D. J., & Seemungal, B. M. (2015). The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers. Cerebral Cortex, 25(2), 554–562.

    PubMed  Google Scholar 

  • Okada, T., Grunfeld, E., Shallo-Hoffmann, J., & Bronstein, A. M. (1999). Vestibular perception of angular velocity in normal subjects and in patients with congenital nystagmus. Brain, 122, 1293–1303.

    PubMed  Google Scholar 

  • Okinaka, Y., Sekitani, T., Okazaki, H., Miura, M., & Tahara, T. (1993). Progress of caloric response of vestibular neuronitis. Acta Oto-Laryngologica. Supplementum, 503, 18–22.

    CAS  PubMed  Google Scholar 

  • Osterhammel, P., Terkildsen, K., & Zilstorff, K. (1968). Vestibular habituation in ballet dancers. Acta Oto-Laryngologica, 66(3), 221–228.

    CAS  PubMed  Google Scholar 

  • Otero-Millan, J., & Kheradmand, A. (2016). Upright perception and ocular torsion change independently during head tilt. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00573.

  • Otero-Millan, J., Winnick, A., & Kheradmand, A. (2018). Exploring the role of temporoparietal cortex in upright perception and the link with torsional eye position. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00192.

  • Paci, M., Baccini, M., & Rinaldi, L. A. (2009). Pusher behaviour: A critical review of controversial issues. Disability and Rehabilitation, 31, 249–258. https://doi.org/10.1080/09638280801928002.

    Article  PubMed  Google Scholar 

  • Paci, M., Matulli, G., Megna, N., Baccini, M., & Baldassi, S. (2011). The subjective visual vertical in patients with pusher behaviour: A pilot study with a psychophysical approach. Neuropsychological Rehabilitation, 21, 539–551. https://doi.org/10.1080/09602011.2011.583777.

    Article  PubMed  Google Scholar 

  • Palla, A., Straumann, D., & Bronstein, A. M. (2008). Vestibular neuritis: Vertigo and the high-acceleration vestibulo-ocular reflex. Journal of Neurology, 255(10), 1479–1482.

    CAS  PubMed  Google Scholar 

  • Pastor, A. M., De la Cruz, R. R., & Baker, R. (1994). Eye position and eye velocity integrators reside in separate brainstem nuclei. Proceedings of the National Academy of Sciences of the United States of America, 91, 807–811.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedersen, P. M., Wandel, A., Jørgensen, H. S., Nakayama, H., Raaschou, H. O., & Olsen, T. S. (1996). Ipsilateral pushing in stroke: Incidence, relation to neuropsychological symptoms, and impact on rehabilitation. The Copenhagen stroke study. Archives of Physical Medicine and Rehabilitation, 77, 25–28. https://doi.org/10.1016/S0003-9993(96)90215-4.

    Article  CAS  PubMed  Google Scholar 

  • Pérennou, D. A., Amblard, B., Laassel, E. M., Benaim, C., Hérisson, C., & Pélissier, J. (2002). Understanding the pusher behavior of some stroke patients with spatial deficits: A pilot study. Archives of Physical Medicine and Rehabilitation, 83, 570–575.

    PubMed  Google Scholar 

  • Pérennou, D. A., Amblard, B., Leblond, C., & Pélissier, J. (1998). Biased postural vertical in humans with hemispheric cerebral lesions. Neuroscience Letters, 252, 75–78.

    PubMed  Google Scholar 

  • Pérennou, D. A., Mazibrada, G., Chauvineau, V., Greenwood, R., Rothwell, J., Gresty, M. A., et al. (2008). Lateropulsion, pushing and verticality perception in hemisphere stroke: A causal relationship? Brain, 131, 2401–2413. https://doi.org/10.1093/brain/awn170.

    Article  PubMed  Google Scholar 

  • Pérennou, D., Piscicelli, C., Barbieri, G., Jaeger, M., Marquer, A., & Barra, J. (2014). Measuring verticality perception after stroke: Why and how? Neurophysiologie Clinique/Clinical Neurophysiology, 44, 25–32. https://doi.org/10.1016/j.neucli.2013.10.131.

    Article  PubMed  Google Scholar 

  • Piscicelli, C., Barra, J., Davoine, P., Chrispin, A., Nadeau, S., & Pérennou, D. (2015a). Inter- and intra-rater reliability of the visual vertical in subacute stroke. Stroke, 46, 1979–1983. https://doi.org/10.1161/STROKEAHA.115.009610.

    Article  PubMed  Google Scholar 

  • Piscicelli, C., Nadeau, S., Barra, J., & Pérennou, D. (2015b). Assessing the visual vertical: How many trials are required? BMC Neurology, 15, 215. https://doi.org/10.1186/s12883-015-0462-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popkirov et al. (2018). https://www.ncbi.nlm.nih.gov/pubmed/29208729

  • Probst, T., Brandt, T., & Degner, D. (1986). Object-motion detection affected by concurrent self-motion perception: Psychophysics of a new phenomenon. Behavioural Brain Research, 22(1), 1–11.

    CAS  PubMed  Google Scholar 

  • Probst, T., Straube, A., & Bles, W. (1985). Differential effects of ambivalent visual-vestibular somatosensory stimulation on the perception of self-motion. Behavioural Brain Research, 16(1), 71–79.

    CAS  PubMed  Google Scholar 

  • Probst, T., & Wist, E. R. (1990). Electrophysiological evidence for visual-vestibular interaction in man. Neuroscience Letters, 108(3), 255–260.

    CAS  PubMed  Google Scholar 

  • Punt, T. D., & Riddoch, M. J. (2002). Towards a theoretical understanding of pushing behaviour in stroke patients. Neuropsychological Rehabilitation, 12, 455–472. https://doi.org/10.1080/09602010244000246.

    Article  Google Scholar 

  • Radtke, A., Popov, K., Bronstein, A. M., & Gresty, M. A. (2000). Evidence for a vestibulo-cardiac reflex in man. Lancet, 356(9231), 736–737.

    CAS  PubMed  Google Scholar 

  • Rancz, E. A., Moya, J., Drawitsch, F., Brichta, A. M., Canals, S., & Margrie, T. W. (2015). Widespread vestibular activation of the rodent cortex. The Journal of Neuroscience, 35(15), 5926–5934. https://doi.org/10.1523/JNEUROSCI.1869-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees, G. (2007). Neural correlates of the contents of visual awareness in humans. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 877–886.

    PubMed  PubMed Central  Google Scholar 

  • Reisine, H., & Raphan, T. (1992). Unit activity in the vestibular nuclei of monkeys during off-vertical axis rotation. Annals of the New York Academy of Sciences, 656, 954–956.

    CAS  PubMed  Google Scholar 

  • Reynolds, R. F., & Bronstein, A. M. (2003). The broken escalator phenomenon. Aftereffect of walking onto a moving platform. Experimental Brain Research, 151(3), 301–308. Epub 2003 Jun 12.

    CAS  PubMed  Google Scholar 

  • Riccio, G. E., Martin, E. J., & Stoffregen, T. A. (1992). The role of balance dynamics in the active perception of orientation. Journal of Experimental Psychology. Human Perception and Performance, 18, 624–644.

    CAS  PubMed  Google Scholar 

  • Rizk, S., Ptak, R., Nyffeler, T., Schnider, A., & Guggisberg, A. G. (2013). Network mechanisms of responsiveness to continuous theta-burst stimulation. The European Journal of Neuroscience, 38(8), 3230–3238.

    PubMed  Google Scholar 

  • Roberts, R. E., Ahmad, H., Arshad, Q., Patel, M., Dima, D., Leech, R., et al. (2016). Functional neuroimaging of visuo-vestibular interaction. Brain Structure and Function, 222(5), 2329–2343. https://doi.org/10.1007/s00429-016-1344-4.

    Article  PubMed  Google Scholar 

  • Rossi, M., Soto, A., Santos, S., Sesar, A., & Labella, T. (2009). A prospective study of alterations in balance among patients with Parkinson’s disease. ENE, 61, 171–176. https://doi.org/10.1159/000189270.

    Article  CAS  Google Scholar 

  • Rousseaux, M., Braem, B., Honoré, J., & Saj, A. (2015). An anatomical and psychophysical comparison of subjective verticals in patients with right brain damage. Cortex, 69, 60–67. https://doi.org/10.1016/j.cortex.2015.04.004.

    Article  PubMed  Google Scholar 

  • Rousseaux, M., Honoré, J., Vuilleumier, P., & Saj, A. (2013). Neuroanatomy of space, body, and posture perception in patients with right hemisphere stroke. Neurology, 81, 1291–1297.

    PubMed  Google Scholar 

  • Rubenstein, R. L., Norman, D. M., Schindler, R. A., & Kaseff, L. (1980). Cerebellar infarction--a presentation of vertigo. Laryngoscope, 90(3), 505–514.

    CAS  PubMed  Google Scholar 

  • Sack, A. T., Camprodon, J. A., Pascual-Leone, A., & Goebel, R. (2005). The dynamics of interhemispheric compensatory processes in mental imagery. Science, 308, 702–704.

    CAS  PubMed  Google Scholar 

  • Saj, A., Cojan, Y., Musel, B., Honoré, J., Borel, L., & Vuilleumier, P. (2014). Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiologie Clinique, 44, 33–40. https://doi.org/10.1016/j.neucli.2013.10.135.

    Article  CAS  PubMed  Google Scholar 

  • Saj, A., Honoré, J., Coello, Y., & Rousseaux, M. (2005). The visual vertical in the pusher syndrome: Influence of hemispace and body position. Journal of Neurology, 252, 885–891. https://doi.org/10.1007/s00415-005-0716-0.

    Article  PubMed  Google Scholar 

  • Santos-Pontelli, T. E. G., Pontes-Neto, O. M., de Araujo, D. B., Santos, A. C., & Leite, J. P. (2011). Persistent pusher behavior after a stroke. Clinics (São Paulo, Brazil), 66, 2169–2171.

    Google Scholar 

  • Santos-Pontelli, T. E. G., Rimoli, B. P., Favoretto, D. B., Mazin, S. C., Truong, D. Q., Leite, J. P., et al. (2016). Polarity-dependent misperception of subjective visual vertical during and after transcranial direct current stimulation (tDCS). PLoS One, 11, e0152331. https://doi.org/10.1371/journal.pone.0152331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlack, A., Hoffmann, K. P., & Bremmer, F. (2002). Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). The European Journal of Neuroscience, 16(10), 1877–1886.

    PubMed  Google Scholar 

  • Scocco, D. H., Wagner, J. N., Racosta, J., Chade, A., & Gershanik, O. S. (2014). Subjective visual vertical in Pisa syndrome. Parkinsonism & Related Disorders, 20, 878–883. https://doi.org/10.1016/j.parkreldis.2014.04.030.

    Article  Google Scholar 

  • Seemungal, B. M. (2005). The mechanisms and loci of human vestibular perception. Doctoral thesis, University of London.

    Google Scholar 

  • Seemungal, B. M. (2007). Neuro-otological emergencies. Current Opinion in Neurology, 20(1), 32–39.

    PubMed  Google Scholar 

  • Seemungal et al. (2013). https://www.ncbi.nlm.nih.gov/pubmed/22291031

  • Seemungal, B. M. (2014). The cognitive neurology of the vestibular system. Current Opinion in Neurology, 27(1), 125–132.

    PubMed  Google Scholar 

  • Seemungal, B. M. (2015). The components of vestibular cognition--motion versus spatial perception. Multisensory Research, 28(5–6), 507–524.

    PubMed  Google Scholar 

  • Seemungal, B. M., Glasauer, S., Gresty, M. A., & Bronstein, A. M. (2007). Vestibular perception and navigation in the congenitally blind. Journal of Neurophysiology, 97(6), 4341–4356.

    PubMed  Google Scholar 

  • Seemungal, B., Gunaratne, I., Fleming, I., Gresty, M., & Bronstein, A. (2004). Perceptual and nystagmic thresholds of vestibular function in yaw. Journal of Vestibular Research, 14, 461–466.

    CAS  PubMed  Google Scholar 

  • Seemungal, B. M., Masaoutis, P., Green, D. A., Plant, G. T., & Bronstein, A. M. (2011). Symptomatic recovery in Miller Fisher Syndrome parallels vestibular-perceptual and not vestibular-ocular reflex function. Frontiers in Neurology, 2, 2.

    PubMed  PubMed Central  Google Scholar 

  • Seemungal, B. M., Rizzo, V., Gresty, M. A., Rothwell, J. C., & Bronstein, A. M. (2008). Posterior parietal rTMS disrupts human Path Integration during a vestibular navigation task. Neuroscience Letters, 437, 88–92.

    CAS  PubMed  Google Scholar 

  • Seemungal, B. M., Rizzo, V., Gresty, M. A., Rothwell, J. C., & Bronstein, A. M. (2009). Perceptual encoding of self-motion duration in human posterior parietal cortex. Annals of the New York Academy of Sciences, 1164, 236–238.

    PubMed  Google Scholar 

  • Shinder, M. E., & Taube, J. S. (2019). Three-dimensional tuning of head direction cells in rats. Journal of Neurophysiology, 121(1), 4–37. https://doi.org/10.1152/jn.00880.2017.

    Article  PubMed  Google Scholar 

  • Silani, G., Lamm, C., Ruff, C. C., & Singer, T. (2013). Right supramarginal gyrus is crucial to overcome emotional egocentricity bias in social judgments. The Journal of Neuroscience, 33, 15466–15476. https://doi.org/10.1523/JNEUROSCI.1488-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan, T., Deutschländer, A., Nolte, A., Schneider, E., Wiesmann, M., Brandt, T., & Dieterich, M. (2005). Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. NeuroImage, 26(3), 721–732.

    PubMed  Google Scholar 

  • Suzuki, M., Kitano, H., Ito, R., Kitanishi, T., Yazawa, Y, Ogawa T., Shiino, A., Kitajima K. (2001). Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. Brain Res Cogn Brain Res, 12, 441–449.

    Google Scholar 

  • Tarnutzer, A. A., Bertolini, G., Bockisch, C. J., Straumann, D., & Marti, S. (2013). Modulation of internal estimates of gravity during and after prolonged roll-tilts. PLoS One, 8, e78079. https://doi.org/10.1371/journal.pone.0078079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarnutzer, A. A., Bockisch, C., Straumann, D., & Olasagasti, I. (2009). Gravity dependence of subjective visual vertical variability. Journal of Neurophysiology, 102, 1657–1671. https://doi.org/10.1152/jn.00007.2008.

    Article  CAS  PubMed  Google Scholar 

  • Teggi, R., Colombo, B., Bernasconi, L., Bellini, C., Comi, G., & Bussi, M. (2009). Migrainous vertigo: Results of caloric testing and stabilometric findings. Headache: The Journal of Head and Face Pain, 49, 435–444. https://doi.org/10.1111/j.1526-4610.2009.01338.x.

    Article  Google Scholar 

  • Thömke, F., Marx, J. J., Iannetti, G. D., Cruccu, G., Fitzek, S., Urban, P. P., et al. (2005). A topodiagnostic investigation on body lateropulsion in medullary infarcts. Neurology, 64, 716–718. https://doi.org/10.1212/01.WNL.0000152040.27264.1A.

    Article  PubMed  Google Scholar 

  • Tomassini, A., Solomon, J. A., & Morgan, M. J. (2014). Which way is down? Positional distortion in the tilt illusion. PLoS One, 9, e110729. https://doi.org/10.1371/journal.pone.0110729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toupet, M., Van Nechel, C., & Bozorg Grayeli, A. (2014). Influence of body laterality on recovery from subjective visual vertical tilt after vestibular neuritis. Audiology & Neuro-Otology, 19, 248–255. https://doi.org/10.1159/000360266.

    Article  Google Scholar 

  • Trousselard, M., Barraud, P., Nougier, V., Raphel, C., & Cian, C. (2004). Contribution of tactile and interoceptive cues to the perception of the direction of gravity. Brain Research. Cognitive Brain Research, 20, 355–362. https://doi.org/10.1016/j.cogbrainres.2004.03.008.

    Article  PubMed  Google Scholar 

  • Tyrrell, R. A., & Owens, D. A. (1988). A rapid technique to assess the resting states of the eyes and other threshold phenomena: The modified binary search (MOBS). Behavior Research Methods, Instruments, & Computers, 20, 137–141.

    Google Scholar 

  • Utz, K. S., Keller, I., Artinger, F., Stumpf, O., Funk, J., & Kerkhoff, G. (2011). Multimodal and multispatial deficits of verticality perception in hemispatial neglect. Neuroscience, 188, 68–79. https://doi.org/10.1016/j.neuroscience.2011.04.068.

    Article  CAS  PubMed  Google Scholar 

  • Van Beuzekom, A. D., Medendorp, W. P., & Van Gisbergen, J. A. M. (2001). The subjective vertical and the sense of self orientation during active body tilt. Vision Research, 41, 3229–3242. https://doi.org/10.1016/S0042-6989(01)00144-4.

    Article  PubMed  Google Scholar 

  • Van Beuzekom, A. D., & Van Gisbergen, J. A. (2000). Properties of the internal representation of gravity inferred from spatial-direction and body-tilt estimates. Journal of Neurophysiology, 84, 11–27. https://doi.org/10.1152/jn.2000.84.1.11/F.

    Article  PubMed  Google Scholar 

  • Ventre-Dominey, J. (2014). Vestibular function in the temporal and parietal cortex: Distinct velocity and inertial processing pathways. Frontiers in Integrative Neuroscience, 8. https://doi.org/10.3389/fnint.2014.00053.

  • Vimal, V. P., Lackner, J. R., & DiZio, P. (2018). Learning dynamic control of body yaw orientation. Experimental Brain Research, 236(5), 1321–1330.

    PubMed  Google Scholar 

  • Vingerhoets, R. A. A., De Vrijer, M., Van Gisbergen, J. A. M., & Medendorp, W. P. (2009). Fusion of visual and vestibular tilt cues in the perception of visual vertical. Journal of Neurophysiology, 101, 1321–1333. https://doi.org/10.1152/jn.90725.2008.

    Article  CAS  PubMed  Google Scholar 

  • Vingerhoets, R. A. A., Medendorp, W. P., & Van Gisbergen, J. A. M. (2008). Body-tilt and visual verticality perception during multiple cycles of roll rotation. Journal of Neurophysiology, 99, 2264–2280. https://doi.org/10.1152/jn.00704.2007.

    Article  CAS  PubMed  Google Scholar 

  • Wade, N. J. (1968). Visual orientation during and after lateral head, body, and trunk tilt. Perception & Psychophysics, 3, 215–219. https://doi.org/10.3758/BF03212730.

    Article  Google Scholar 

  • Wade, N. J. (1970). Effect of prolonged tilt on visual orientation. The Quarterly Journal of Experimental Psychology, 22, 423–439. https://doi.org/10.1080/14640747008401916.

    Article  CAS  PubMed  Google Scholar 

  • Wade, N. J., & Day, R. H. (1968). Development and dissipation of a visual spatial aftereffect from prolonged head tilt. Journal of Experimental Psychology, 76, 439–443.

    CAS  PubMed  Google Scholar 

  • Waespe, W., & Henn, V. (1977). Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Experimental Brain Research, 27(5), 523–538.

    CAS  PubMed  Google Scholar 

  • Wenzel, R., Bartenstein, P., Dieterich, M., Danek, A., Weindl, A., Minoshima, S., Ziegler, S., Schwaiger, M., & Brandt, T. (1996). Deactivation of human visual cortex during involuntary ocular oscillations. A PET activation study. Brain, 119, 101–110.

    PubMed  Google Scholar 

  • Wiest, G., Demer, J. L., Tian, J., Crane, B. T., & Baloh, R. W. (2001). Vestibular function in severe bilateral vestibulopathy. Journal of Neurology, Neurosurgery, and Psychiatry, 71(1), 53–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winnick, A., Sadeghpour, S., Otero-Millan, J., Chang, T.-P., & Kheradmand, A. (2018). Errors of upright perception in patients with vestibular migraine. Frontiers in Neurology, 9. https://doi.org/10.3389/fneur.2018.00892.

  • Wright, W. G., & Horak, F. B. (2007). Interaction of posture and conscious perception of gravitational vertical and surface horizontal. Experimental Brain Research, 182, 321–332. https://doi.org/10.1007/s00221-007-0990-4.

    Article  PubMed  Google Scholar 

  • Yakusheva, T. A., Shaikh, A. G., Green, A. M., Blazquez, P. M., Dickman, J. D., & Angelaki, D. E. (2007). Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron, 54, 973–985.

    CAS  PubMed  Google Scholar 

  • Yardley, L. (1990). Contribution of somatosensory information to perception of the visual vertical with body tilt and rotating visual field. Perception & Psychophysics, 48, 131–134.

    CAS  Google Scholar 

  • Yates, B. J., Jian, B. J., & Cotter, L. A. (2000). Responses of vestibular nucleus neurons to tilt following chronic bilateral removal of vestibular inputs. Experimental Brain Research, 130, 151–158.

    CAS  PubMed  Google Scholar 

  • Yelnik, A. P., Lebreton, F. O., Bonan, I. V., Colle, F. M. C., Meurin, F. A., Guichard, J. P., et al. (2002). Perception of verticality after recent cerebral hemispheric stroke. Stroke, 33, 2247–2253. https://doi.org/10.1161/01.STR.0000027212.26686.48.

    Article  PubMed  Google Scholar 

  • zu Eulenburg, P., Caspers, S., Roski, C., Eickhoff, S. B., (2012). Meta-analytical definition and functional connectivity of the human vestibular cortex. NeuroImage, 60, 162–169. https://doi.org/10.1016/j.neuroimage.2011.12.032

  • Zoccolotti, P., Antonucci, G., Goodenough, D. R., Pizzamiglio, L., & Spinelli, D. (1992). The role of frame size on vertical and horizontal observers in the rod-and-frame illusion. Acta Psychologica, 79, 171–187.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Kheradmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rust, H.M., Seemungal, B.M., Kheradmand, A. (2019). Vestibular Perception: From Bench to Bedside. In: Shaikh, A., Ghasia, F. (eds) Advances in Translational Neuroscience of Eye Movement Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-31407-1_3

Download citation

Publish with us

Policies and ethics