Skip to main content
Log in

Activity-dependent modulation of inhibition in Purkinje cells by TrkB ligands

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In the cerebellumin vitro TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis of Purkinje cells and also modulate inhibitory synaptic function. This mini review examines the roles of TrkB receptor activation by BDNF particularly in relation to activity-dependent synaptic plasticity on Purkinje cells and recent studies on the acute modulation of GABAergic synapses by BDNF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci. 2001;24: 677–736.

    Article  PubMed  CAS  Google Scholar 

  2. McAllister AK. Neurotrophins and neuronal differentiation in the central nervous system. Cell Mol Life Sci. 2001;58: 1054–60.

    Article  PubMed  CAS  Google Scholar 

  3. Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995;18: 223–53.

    Article  PubMed  CAS  Google Scholar 

  4. Thoenen H. Neurotrophins and neuronal plasticity. Science. 1995;270:593–8.

    Article  PubMed  CAS  Google Scholar 

  5. Wetmore C, Ernfors P, Persson H, Olson L. Localization of brain-derived neurotrophic factor mRNA to neurons in the brain by in-situ hybridization. Exp Neurol. 1990;109:141–52.

    Article  PubMed  CAS  Google Scholar 

  6. Rocamora N, Garcia LF, Palacios JM, Mengod G. Differential expression of brain-derived neurotrophic factor, neurotrophin-3, and low-affinity nerve growth factor receptor during the postnatal development of the rat cerebellar system. Mol Brain Res. 1993;17:1–8.

    Article  PubMed  CAS  Google Scholar 

  7. Klein R, Martin-Zanca D, Barbacid M, Parada L. Expression of the tyrosine receptor gene TrkB is confined to the murine embryonic and adult nervous system. Development. 1990;109:845–50.

    PubMed  CAS  Google Scholar 

  8. Alvarez-Dolado M, Iglesias T, Rodriguez-Pena A, Bernal J, Munoz A. Expression of neurotrophins and the Trk family of neurotrophins receptors in normal and hypothyroid rat brain. Mol Brain Res. 1994;27:249–57.

    Article  PubMed  CAS  Google Scholar 

  9. Segal R, Pomeroy S, Stiles C. Axonal growth and fasciculation linked to differential expression of BDNF and NT-3 receptors in developing cerebellar granule cells. J Neurosci. 1995;15:4970–81.

    PubMed  CAS  Google Scholar 

  10. Kawamoto Y, Nakamura S, Nakano S, Oka N, Akiguchi I, Kimura J. Immunohistochemical localization of brain-derived neurotrophic factor in adult rat brain. Neurosci. 1996;74:1209–26.

    CAS  Google Scholar 

  11. Lindholm D, Dechant G, Heisenberg CP, Thoenen H. Brain-derived neurotrophic factor is a survival factor for cultured rat cerebellar granule neurons and protects them against glutamate-induced neurotoxicity. Eur J Neurosci. 1993;5:1455–64.

    Article  PubMed  CAS  Google Scholar 

  12. Larkfors L, Lindsay RM, Alderson RF. Characterization of the responses of Purkinje cells to neurotrophin treatment. J Neurochem. 1996;66:1362–73.

    Article  PubMed  CAS  Google Scholar 

  13. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal R. Abnormal cerebellar development and foliation for BDNF-/-mice reveals a role for neurotrophins in CNS patterning. Neuron. 1997;19:269–81.

    Article  PubMed  CAS  Google Scholar 

  14. Carter AR, Chen C, Schwartz PM, Segal RA. Brain-derived neurotrophic factor modulates cerebellar plasticity and synaptic ultrastructure. J Neurosci. 2002;22:1316–27.

    PubMed  CAS  Google Scholar 

  15. Richardson CA, Leitch B. Phenotype of cerebellar glutamatergic neurons is altered in stargazer mutant mice lacking brain-derived neurotrophic factor mRNA expression. J Comp Neurol. 2005;481:145–59.

    Article  PubMed  CAS  Google Scholar 

  16. Thompson CL, Tehrani MH, Barnes EM, Stephenson FA. Decreased expression of GABAA receptor α6 and β3 subunits in stargazer mutant mice: A possible role for brain-derived neurotrophic factor in the regulation of cerebellar GABAA receptor expression. Mol Brain Res. 1998;60:282–90.

    Article  PubMed  CAS  Google Scholar 

  17. Richardson CA, Leitch B. Cerebellar Golgi, Purkinje, and basket cells have reduced γ-aminobutyric acid immuno-reactivity in stargazer mutant mice. J Comp Neurol. 2002;453:85–99.

    Article  PubMed  Google Scholar 

  18. Bao S, Chen L, Qiao X, Thompson RF. Transgenic brain-derived neurotrophic factor modulates a developing cerebellar inhibitory synapse. Learn Mem. 1999;6:276–83.

    PubMed  CAS  Google Scholar 

  19. Rico B, Baoji X, Reichardt LF. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Nature Neurosci. 2002;5:225–33.

    Article  PubMed  CAS  Google Scholar 

  20. Seil FJ, Drake-Baumann R, Leiman AL, et al. Morphological correlates of altered neuronal activity in organotypic cerebellar cultures chronically exposed to anti-GABA agents. Dev Brain Res. 1994;77:123–32.

    Article  CAS  Google Scholar 

  21. Seil FJ, Drake-Baumann R. Reduced cortical inhibitory synaptogenesis in organotypic cerebellar cultures developing in the absence of neuronal activity. J Comp Neurol. 1994;342:366–77.

    Article  PubMed  CAS  Google Scholar 

  22. Seil FJ. Cerebellum in tissue culture. Rev Neurosci. 1979;4: 105–77.

    Article  Google Scholar 

  23. Zafra F, Hengerer B, Leibrock J, et al. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J. 1990;9:3545–50.

    PubMed  CAS  Google Scholar 

  24. Wetmore C, Olson L, Bean AJ. Regulation of brain-derived neurotrophic factor (BDNF) expression and release from hippocampal neurons is mediated by non-NMDA type glutamate receptors. J Neurosci. 1994;14:1688–700.

    PubMed  CAS  Google Scholar 

  25. Blöchl A, Thoenen H. Characterization of nerve growth factor (NGF) release from hippocampal neurons; evidence for a constitutive and an unconventional sodium-dependent regulated pathway. Eur J Neurosci. 1995;7: 1220–8.

    Article  PubMed  Google Scholar 

  26. Bonhoeffer T. Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol. 1996;6:119–26.

    Article  PubMed  CAS  Google Scholar 

  27. Goodman LJ, Valverde J, Lim F, Geschwind MD, et al. Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol Cell Neurosci. 1996;7:222–38.

    Article  PubMed  CAS  Google Scholar 

  28. Lu B, Figurov A. Role of neurotrophins in synapse development and plasticity. Rev Neurosci. 1997;8:1–12.

    PubMed  CAS  Google Scholar 

  29. Gorba T, Klostermann O, Wahle P. Development of neuronal activity and activity-dependent expression of brain-derived neurotrophic factor mRNA in organotypic cultures of rat visual cortex. Cerebral Cortex. 1999;9:864–77.

    Article  PubMed  CAS  Google Scholar 

  30. Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: Current facts and future prospects. Prog Neurobiol. 2003;69:341–74.

    Article  PubMed  CAS  Google Scholar 

  31. Seil FJ. BDNF and NT-4, but not NT-3 promote development of inhibitory synapses in the absence of neuronal activity. Brain Res. 1999;818:561–4.

    Article  PubMed  CAS  Google Scholar 

  32. Seil FJ, Drake-Baumann R. TrkB receptor ligands promote activity-dependent inhibitory synaptogenesis. J Neurosci. 2000;20:5367–73.

    PubMed  CAS  Google Scholar 

  33. Seil FJ, Drake-Baumann R. Neurotrophins and activity-dependent inhibitory synaptogenesis. Progress in Brain Res. 2000;128:219–29.

    Article  CAS  Google Scholar 

  34. Lessman V. Neurotrophin-dependent modulation of gluta-matergic synaptic transmission in the mammalian CNS. Gen Pharmac. 1998;31:667–74.

    Google Scholar 

  35. Schuman EM. Neurotrophin regulation of synaptic transmission. Curr Opin Neurobiol. 1999;9:105–9.

    Article  PubMed  CAS  Google Scholar 

  36. McAllister KA, Katz LC, Lo D. Neurotrophins and synaptic plasticity. Ann Rev Neurosci. 1999;22:295–318.

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka T, Saito H, Matsuki N. Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus. J Neurosci. 1997;17:2959–66.

    PubMed  CAS  Google Scholar 

  38. Frerking M, Malenka RC, Nicoll RA. Brain-derived neurotrophic factor (BDNF) modulates inhibitory, but not excitatory, transmission in the CA1 region of the hippocampus. J Neurophysiol. 1998;80:3383–6.

    PubMed  CAS  Google Scholar 

  39. Cheng Q, Yeh HH. Brain-derived neurotrophic factor attenuates mouse cerebellar granule cell GABAA receptor-mediated responses via postsynaptic mechanisms. J Physiol. 2003;548: 711–21.

    Article  PubMed  CAS  Google Scholar 

  40. Boxall AR. GABAergic mIPSCs in rat cerebellar Purkinje cells are modulated by TrkB and mGluR1-mediated stimulation of Src. J Physiol. 2000;524:677–84.

    Article  PubMed  CAS  Google Scholar 

  41. Cheng Q, Yeh HH. PLCc signaling underlies BDNF potentiation of Purkinje cell responses to GABA. J Neurosci Res. 2005;79:616–27.

    Article  PubMed  CAS  Google Scholar 

  42. Drake-Baumann R. Rapid modulation of inhibitory synaptic currents in cerebellar Purkinje cells by BDNF. Synapse. 2005;57:183–90.

    Article  PubMed  CAS  Google Scholar 

  43. Llano I, Gonzalez J, Caputo C, Lai FA, Blayney LM, Tan YP, Marty A. Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients. Nat Neurosci. 2000;3:1256–65.

    Article  PubMed  CAS  Google Scholar 

  44. Bardo S, Robertson B, Stephens GJ. Presynaptic internal Ca2+ stores contribute to inhibitory neurotransmitter release onto mouse cerebellar Purkinje cells. Br J Pharmacol. 2002; 137:529–37.

    Article  PubMed  CAS  Google Scholar 

  45. Collin T, Marty A, Llano I. Presynaptic calcium stores and synaptic transmission. Curr Opin Neurobiol. 2005;15: 275–81.

    Article  PubMed  CAS  Google Scholar 

  46. Mizoguchi Y, Nabekura J. Sustained intracellular Ca2+ elevation induced by a brief BDNF application in rat visual cortex neurons. Neuroreport. 2003;14:1481–3.

    Article  PubMed  Google Scholar 

  47. Whiting PJ, Bonnert TP, McKernan RM, et al. Molecular and functional diversity of the expanding GABAA receptor gene family. Ann NY Acad Sci. 1999;868:645–53.

    Article  PubMed  CAS  Google Scholar 

  48. Brandon NJ, Delmas P, Kittler JT, McDonald BJ, Sieghart W, Brown DA, Smart TG, Moss SJ. GABAA receptor phosphorylation and functional modulation in cortical neurons by a protein kinase C-dependent pathway. J Biol Chem. 2000;275:38856–62.

    Article  PubMed  CAS  Google Scholar 

  49. Brandon NJ, Delmas P, Hill J, Smart TG, Moss SJ. Constitutive tyrosine phosphorylation of the GABAA receptor gamma 2 subunit in rat brain. Neuropharmacology. 2001;41:745–52.

    Article  PubMed  CAS  Google Scholar 

  50. Brandon NJ, Jovanovic JN, Moss SJ. Multiple roles of protein kinases in the modulation of γ-aminobutyric acidA receptor function and cell surface expression. Pharmacol Ther. 2002;94:113–22.

    Article  PubMed  CAS  Google Scholar 

  51. Brünig I, Penschuck S, Berninger B, Benson J, Fritschy JM. BDNF reduces miniature inhibitory postsynaptic currents by rapid downregulation of GABAA receptor surface expression. Eur J Neurosci. 2001;13:1320–8.

    Article  PubMed  Google Scholar 

  52. Jovanovic JN, Thomas P, Kittler JT, Smart TG, Moss SJ. Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABAA receptor phoshorylation, activity, and cell surface stability. J Neurosci. 2004;24: 522–30.

    Article  PubMed  CAS  Google Scholar 

  53. Mizoguchi Y, Kanematsu T, Hirata M, Nabekura J. A rapid increase in the total number of cell surface functional GABAA receptors induced by brain-derived neurotrophic factor in rat visual cortex. J Biol Chem. 2003;278:44097–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosemarie Drake-Baumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drake-Baumann, R. Activity-dependent modulation of inhibition in Purkinje cells by TrkB ligands. Cerebellum 5, 220–226 (2006). https://doi.org/10.1080/14734220600621344

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220600621344

Key words

Navigation