Skip to main content
Log in

Cerebellar connections: hypothalamus

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Morphological studies have described reciprocal cerebello-hypothalamic projections in various species. These connections provide evidence for the key role of the cerebellum and hypothalamus in physiological regulatory processes such as autonomic and endocrine homeostasis. Our recent study using horseradish peroxidase (HRP) retrograde axonal transport technique showed cerebellar connections with the posterior and the dorsomedial hypothalamic nuclei. Further, we have demonstrated regional differences of the connections of the dorsomedial hypothalamic nucleus in rat. The results of HRP labelling showed that afferent pathways originating from the anterior and posterior parts of dorsomedial hypothalamic nucleus indicate a number of differences in the projections. The posterior part of the dorsomedial hypothalamic nucleus and the posterior hypothalamic nucleus receives direct distinct projections from the cerebellum, whereas the anterior part of the dorsomedial hypothalamic nucleus does not. Moreover, the posterior part of the dorsomedial nucleus of the hypothalamus when compared to the posterior hypothalamic nucleus has more intense connections with the cerebellum. These observations bring a new perspective on the question of how the cerebellum is involved in the regulation visceromotor functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albe-Fessard D, Berkley KJ, Kruger L, Ralston HJ, Willis WD. Diencephalic mechanisms of pain sensation. Brain Res Rev 1985; 9: 217–296.

    Article  Google Scholar 

  2. Gilbert PFC. A theory of memory that explains the function and structure of the cerebellum. Brain Res 1974; 70: 1–18.

    Article  PubMed  CAS  Google Scholar 

  3. Gonzalo-Ruiz A, Leichnetz GR. Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull 1990; 25: 919–917.

    Article  PubMed  CAS  Google Scholar 

  4. Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Rev 2000; 31: 236–250.

    Article  PubMed  CAS  Google Scholar 

  5. Nixon PD, Passingham RE. The cerebellum and cognition: cerebellar lesions do not impair spatial working memory or visual associative learning in monkeys. Eur J Neurosci 1999; 11: 4070–4080.

    Article  PubMed  CAS  Google Scholar 

  6. Schmahmann JD, Pandya DN. The cerebro-cerebellar system. Int Rev Neurobiol 1997; 41: 31–60.

    PubMed  CAS  Google Scholar 

  7. Teune TM, Van Der Burg J, Van Der Moer J, Voogd J, Ruigrok TJ. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 2000; 124: 141–172.

    PubMed  CAS  Google Scholar 

  8. Holderfer RN, Miller LE, Chen LJ, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol 2000; 84: 585–590.

    Google Scholar 

  9. Tamada T, Miyauchi S, Imamizu H, Yoshioka T, Kawato M. Cerebro-cerebellar functional connectivity revealed by the laterality index in tool-use learning. Neuro Report 1999; 10: 325–331.

    CAS  Google Scholar 

  10. Leichnetz GR, Smith DJ, Spencer RF. Cortical projections of the paramedian tegmental and basilar pons in the monkey. J Comp Neurol 1984; 228: 388–408.

    Article  PubMed  CAS  Google Scholar 

  11. SchMahmann JD, Pandya DN. Prelunate occipitotemporal and parahipocampal projections to the basis pontis in the rhesus monkey. J Comp Neurol 1993; 337: 94–112.

    Article  PubMed  CAS  Google Scholar 

  12. SchMahmann JD, Pandya DN. Prefrontal cortex projections to the basilar pons in the rhesus monkey. Implications for the cerebellar contributions to higher functions. Neurosci Lett 1995; 199: 175–178.

    Article  PubMed  CAS  Google Scholar 

  13. Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 1983; 5: 237–265.

    Article  Google Scholar 

  14. Yamamoto T, Yoshida K, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral response to the frontal association cortex in the monkey: horseradish peroxidase and fluorescent dye double staining study. Brain Res 1992; 579: 315–320.

    Article  PubMed  CAS  Google Scholar 

  15. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive functions. Science 1994; 266: 458–461.

    Article  PubMed  CAS  Google Scholar 

  16. Person RJ, Andrezik JA, Dormer KJ, Foreman RD. Fastigial nucleus projections in the midbrain and thalamus. Neurosci 1986; 18: 105–120.

    Article  CAS  Google Scholar 

  17. Liu Fa-yi, Qiao JT, Dafny N. Cerebellar stimulation modulates thalamic noxious-evoked reponses. Brain Res Bull 1993; 30: 529–534.

    Article  PubMed  CAS  Google Scholar 

  18. Lynch JC, Hoover JE, Strick PL. Input to the primate frontal eye field from the substantia nigra, superior coliculus, and dentate nucleus demonstrated by transneuronal transport. Exp Brain Res 1994; 100: 181–186.

    Article  PubMed  CAS  Google Scholar 

  19. Rouiller EM, Liang F, Babalian A, Moret V, Wiesendanger M. Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in the macaque monkeys. J Comp Neurol 1994; 345: 185–213.

    Article  PubMed  CAS  Google Scholar 

  20. Hendry SH, Jones EG, Graham J. Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J Comp Neurol 1979; 185: 679–713.

    Article  PubMed  CAS  Google Scholar 

  21. Stepniewska L, Preuss TM, Kass JH. Thalamic connections of the primary motor cortex (MI) of owl monkeys. J Comp Neurol 1994; 349: 558–582.

    Article  PubMed  CAS  Google Scholar 

  22. Hua SE, Houk JC. Cerebellar guidance of premotor network development and sensorimotor learning. Learning Memory 1997; 4: 63–76.

    Article  PubMed  CAS  Google Scholar 

  23. Çavdar S, Onat F, Yananh HR, Şehirli Ü, Tulay C, Saka E, Gürdal E. Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J Anat 2002; 201: 485–491.

    Article  PubMed  Google Scholar 

  24. Crick F. Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences USA 1984; 81: 4586–4590.

    Article  CAS  Google Scholar 

  25. Mitrofanis J, DeFonseka R. Organization of connections between the zona inserta and the interposed nucleus. Anat Embryol (Berl) 2001; 204: 153–159.

    Article  CAS  Google Scholar 

  26. Newman PP, Rezaa H. Functional relationship between the hippocampus and the cerebellum: an electrophysiological study of the cat. J Physiol 1979; 287: 405–426.

    PubMed  CAS  Google Scholar 

  27. Ruigrok TJ, Voogd J. Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 1990; 298: 315–333.

    Article  PubMed  CAS  Google Scholar 

  28. Kawamura S, Hattori S, Higo S, Matsuyama T. The cerebellar projections to the superior colliculus and pretectum in the cat: an autoradiographic and horseradish peroxidase study. Neurosci 1982; 7: 1673–1689.

    Article  CAS  Google Scholar 

  29. Wallenberg A. Sekundäre Bahnen aus dem frontalen sensiblen Trigeminuskerne des Kaninchens. Anat Anz 1905; 26: 145–155.

    Google Scholar 

  30. Whiteside JA, Snider RS. Relation to cerebelllar to upper brain stem. J Neurophysiol 1953; 16: 397–413.

    PubMed  CAS  Google Scholar 

  31. Jacobs VL The cerebellofugal system in the tarsius (Tarsiidae carbonarius) and the marmoset (Oedipomidas oedipus). Doctoral dissertation University of Kansas, Lawrence, Kansas, 1965.

    Google Scholar 

  32. Martin GF, King JS, Dom R. The projections of the deep cerebellar nuclei of the opossum, Didelphis marsupialis virginiana. J Hirnforsch 1974; 15: 545–573.

    Google Scholar 

  33. Zheng ZH, Dietrichs E, Walberg F. Cerebellar afferent fibres from the dorsal vagal nucleus in the cat. Neurosci Lett 1982; 32: 113–118.

    Article  PubMed  CAS  Google Scholar 

  34. Chida K, Iadecola C, Underwood MD, Reis DJ. A novel vasodepressor response elicited from the rat cerebellar fastigial nucleus: the fastigial depressor response. Brain Res 1986; 370: 378–382.

    Article  PubMed  CAS  Google Scholar 

  35. Bernardis LL, Bellinger LL. The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc Soc Exp Biol Med 1998; 218: 284–306.

    PubMed  CAS  Google Scholar 

  36. Dalton LD, Carpenter RG, Grossman SP. Ingestive behavior in adult rat with dorsomedial hypothalamic lesion. Physiol Behav 1981; 26: 117–123.

    Article  PubMed  CAS  Google Scholar 

  37. Gören Z, Asian N, Berkman K, Oktay S, Onat F. The role of amygdala and hypothalamus in GABAa antagonist bicucullineinduced cardiovascular responses in conscious rats. Brain Res 1996; 722: 118–124.

    Article  PubMed  Google Scholar 

  38. Inglefield JR, Schwarzkopf SB, Kellog CK. Alterations in behavioral responses to Stressors following excitotoxin lesion of dorsomedial hypothalamic region. Brain Res 1994; 633: 151–161.

    Article  PubMed  CAS  Google Scholar 

  39. Dietrichs E. Cerebellar autonomic function: direct hypothalamocerebellar pathway. Science 1984; 223: 591–593.

    Article  PubMed  CAS  Google Scholar 

  40. Dietrichs E, Zheng H. Are hypothalamo-cerebellar fibers collaterals from the hypothalamo-spinal projections? Brain Res 1984; 296: 225–231.

    Article  PubMed  CAS  Google Scholar 

  41. Dietrichs E, Haines DE, Qvist H. Indirect hypothalamo-cerebellar pathway? Demonstration of hypothalamic efferents to the lateral reticular nucleus. Exp Brain Res 1985; 60: 483–491.

    Article  PubMed  CAS  Google Scholar 

  42. Dietrichs E, Walberg F, Haines DE. Cerebellar nuclear afferents from feline hypothalamus demonstrated by retrograde transport after implantation of crystallin wheat germ agglutinin-horseradish peroxidase complex. Neurosci Lett 1985; 54: 129–133.

    Article  PubMed  CAS  Google Scholar 

  43. Haines DE, Dietrichs E. Hypothalamo-cerebellar projections in the squirrel monkey (Saimiri sciureus): an HRP study. Soc Neurosci Abstr 1983; 9: 870.

    Google Scholar 

  44. Ter Horst GJ, Luiten PGM. The projections of the dorsomedial hypothalamic nucleus in the rat. Brain Res Bull 1986; 16: 231–248.

    Article  Google Scholar 

  45. Dietrichs E, Haines DE. Demonstration of hypothalamo-cerebellar and cerebello-hypothalamic fibers in a prosimian primate (Galago crassicaudatus) Anat Embryol 1984; 170: 313–318.

    Article  PubMed  CAS  Google Scholar 

  46. Wang T, Yu Qx, Wang JJ. Effects of stimulating lateral hypothalamic area and ventromedial nucleus of hypothalamus on cerebellar cortical neuronal activity in the cat. Chin J Physiol 1994; 10: 17–25.

    CAS  Google Scholar 

  47. Dietrichs E, Roste GK, Roste LS, Qvist HL, Haines DE. The hypothalamocerebellar projection in the cat: branching and nuclear termination. Arch Ital Biol 1990; 132: 25–38.

    Google Scholar 

  48. Haines DE, May PJ, Dietrichs E. Neuronal connections between the cerebellar nuclei and hypothalamus in Macaca fascicularis: cerebello-visceral circuit. J Comp Neurol 1990; 299: 106–122.

    Article  PubMed  CAS  Google Scholar 

  49. Haines DE, Sowa TE, Dietrichs E. Connections between the cerebellum and hypothalamus in the tree shrew (Tupaia glis). Brain Res 1985; 328: 367–373.

    Article  PubMed  CAS  Google Scholar 

  50. Gören Z, Akici A, Berkman K, Onat F. Cardiovascular responses to NMDA injected into nuclei of hypothalamus or amygdala in conscious rats. Pharmacology 2000; 61: 257–264.

    Article  PubMed  Google Scholar 

  51. Dampney RAL. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994; 74: 323–364.

    PubMed  CAS  Google Scholar 

  52. De Novellis V, Stotz-Potter EH, Morin SM, Rossi F, Di Micco JA. Hypothalamic sites mediating cardiovascular effects of microinjected bicuculline and EAAs in rats. Am J Physiol 1995; 269: 131–140.

    Google Scholar 

  53. Yoshimatus H, Niijima A, Oomura Y, Yamabe K, Katafuchi T. Effects of hypothalamic lesions on pancreatic autonomic nerve activity in the rat. Brain Res 1984; 303: 147–152.

    Article  Google Scholar 

  54. Eferakeya JE, Bunag RD. Adrenomedullary pressor responses during posterior hypothalamic stimulation. Am J Physiol 1974; 227: 114.

    PubMed  CAS  Google Scholar 

  55. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF. The cerebellar-hypothalamic axis: Basic circuits and clinical observations. Int Rev Neurobiol 1997; 41P: 83–107.

    Google Scholar 

  56. Çavdar S, Onat F, Aker R, Şehirli Ü, Şan T, Yananli HR. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 2001; 198: 463–472.

    Article  PubMed  Google Scholar 

  57. Çavdar S, Şan T, Aker R, Şehirli Ü, Onat F. Cerebellar connections to the dorsomedial and posterior nuclei of the hypothalamus in the rat. J Anat 2001; 198: 37–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filiz Onat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onat, F., Çavdar, S. Cerebellar connections: hypothalamus. Cerebellum 2, 263–269 (2003). https://doi.org/10.1080/14734220310016187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310016187

Keywords

Navigation