Skip to main content
Log in

Unraveling the cerebellar cortex: Cytology and cellular physiology of large-sized interneurons in the granular layer

  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Neuronal network behaviors emerge from complex interactions between excitatory relay cells, principal cells and inhibitory interneurons. Therefore, characterizing homogeneous cell types and their properties is an essential step towards understanding information processing in the brain. The cerebellar cortex is generally described as a repetitive circuit composed of only five cell types. However, recent studies have revealed an unexpected diversity in the morphological, neurochemical and electrophysiological properties of the large-sized granular layer interneurons. These data are reviewed here with an emphasis on the synaptic interactions of the different cell types within the cerebellar cortex. The existence of a complex network of excitatory and inhibitory interneurons controlling the spatial and temporal pattern of granule cell firing is documented, providing insights into the cellular and synaptic processes underlying oscillations and synchronization in the cerebellar cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Schutter E, Bjaalie JG. Coding in the granular layer of the cerebellum. Prog Brain Res 2001; 130: 279–296.

    PubMed  Google Scholar 

  2. Ito M. The Cerebellum and Neural Control. New York: Raven Press, 1984.

    Google Scholar 

  3. Palay SL, Chan-Palay V. Cerebellar Cortex: Cytology and Organization. New York: Springer-Verlag, 1974.

    Google Scholar 

  4. Brodal P, Bjaalie JG. Salient anatomical features of the corticoponto-cerebellar pathway. Prog Brain Res 1997; 114: 227–249.

    PubMed  CAS  Google Scholar 

  5. Ruigrok TJ, Cella F. Precerebellar nuclei and red nucleus. In: Paxinos G, editor. The Rat Nervous System. San Diego: Academic Press, 1995: 277–308.

    Google Scholar 

  6. D’Angelo E, Rossi P, Taglietti V. Voltage-dependent kinetics of N-methyl-D-aspartate synaptic currents in rat cerebellar granule cells. Eur JNeurosci 1994; 6: 640–645.

    Article  CAS  Google Scholar 

  7. D’Angelo E, Rossi P, Armano S, Taglietti V. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. J Neurophysiol 1999; 81: 277–287.

    PubMed  CAS  Google Scholar 

  8. Maffei A, Prestori F, Rossi P, Taglietti V, D’Angelo E. Presynaptic current changes at the mossy fiber-granule cell synapse of cerebellum during LTP. J Neurophysiol 2002; 88: 627–638.

    PubMed  Google Scholar 

  9. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat Neurosci 2001; 4: 467–475.

    PubMed  CAS  Google Scholar 

  10. Armano S, Rossi P, Taglietti V, D’Angelo E. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. Eur J Neurosci 2000; 20: 5208–5216.

    CAS  Google Scholar 

  11. Schiffmann SN, Cheron G, Lohof A, et al. Impaired motor coordination and Purkinje cell excitability in mice lacking calretinin. Proc Natl Acad Sci USA 1999; 96: 5257–5262.

    Article  PubMed  CAS  Google Scholar 

  12. Airman J, Bayer SA. Time of origin and distribution of a new cell type in the rat cerebellar cortex. Exp Brain Res 1977; 29: 265–274.

    Google Scholar 

  13. Hockfield S. A Mab to a unique cerebellar neuron generated by immunosuppression and rapid immunization. Science 1987; 237: 67–70.

    Article  PubMed  CAS  Google Scholar 

  14. Braak E, Braak H. The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretininimmunoreactivity. Neurosci Lett 1993; 154: 199–202.

    Article  PubMed  CAS  Google Scholar 

  15. Munoz DG. Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity. Brain Res 1990; 528: 335–338.

    Article  PubMed  CAS  Google Scholar 

  16. Mugnaini E, Dino MR, Jaarsma D. The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. Prog Brain Res 1997; 114: 131–150.

    Article  PubMed  CAS  Google Scholar 

  17. Mugnaini E, Floris A, Wright-Goss M. Extraordinary synapses of the unipolar brush cell: an electron microscopic study in the rat cerebellum. Synapse 1994; 16: 284–311.

    Article  PubMed  CAS  Google Scholar 

  18. Harris J, Moreno S, Shaw G, Mugnaini E. Unusual neurofilament composition in cerebellar unipolar brush neurons. J Neurocytol 1993; 22: 1039–1059.

    Article  PubMed  CAS  Google Scholar 

  19. Kinney GA, Overstreet LS, Slater NT. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J Neurophysiol 1997; 78: 1320–1333.

    PubMed  CAS  Google Scholar 

  20. Nunzi MG, Birnstiel S, Bhattacharyya BJ, Slater NT, Mugnaini E. Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex. J Comp Neurol 2001; 434: 329–341.

    Article  PubMed  CAS  Google Scholar 

  21. Dino MR, Schuerger RJ, Liu Y-B, Slater NT, Mugnaini E. Unipolar brush cell: a potential feedforward excitatory interneuron of the cerebellum. Neuroscience 2000; 98: 625–636.

    Article  PubMed  CAS  Google Scholar 

  22. Nunzi MG, Mugnaini E. Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum. J Comp Neurol 2000; 422: 55–65.

    Article  PubMed  CAS  Google Scholar 

  23. Dino MR, Perachio AA, Mugnaini E. Cerebellar unipolar brush cells are targets of primary vestibular afferents: an experimental study in the gerbil. Exp Brain Res 2001; 140: 162–170.

    Article  PubMed  CAS  Google Scholar 

  24. Golgi C. Sulla fina anatomia degli organi centrali del sistema nervoso IV. Sulla fina anatomia delle circonvoluzioni cerebellari. Rivista Sperimentale di Freniatria 1883; 9: 1–17.

    Google Scholar 

  25. Dieudonné S. Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol 1998; 510: 845–866.

    Article  PubMed  Google Scholar 

  26. Vos BP, Volny-Luraghi A, De Schutter E. Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur J Neurosci 1999; 11: 2621–2634.

    Article  PubMed  CAS  Google Scholar 

  27. Schulman JA, Bloom FE. Golgi cells of the cerebellum are inhibited by inferior olive activity. Brain Res 1981; 210: 350–355.

    Article  PubMed  CAS  Google Scholar 

  28. Hamori J, Szentagothai J. Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscope study. Exp Brain Res 1966; 2: 35–48.

    Article  PubMed  CAS  Google Scholar 

  29. Voogd J, Glickstein M. The anatomy of the cerebellum. Trends Neurosci 1998; 21: 370–375.

    Article  PubMed  CAS  Google Scholar 

  30. Ottersen OP, Storm-Mathisen J, Somogyi P. Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 1988; 450: 342–353.

    Article  PubMed  CAS  Google Scholar 

  31. Dugué G, Dumoulin A, Supplisson S, Dieudonné S. Glycinergic inhibition at cerebellar glomerular synapses between Golgi cells and unipolar brush cells. FENS Forum Abstr 2002; 146: 2.

    Google Scholar 

  32. Brickley SG, Cull-Candy SG, Farrant M. Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAa receptors. J Physiol 1996; 497: 753–759.

    PubMed  CAS  Google Scholar 

  33. Nusser Z, Sieghart W, Somogyi P. Segregation of different GABAa receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 1998; 18: 1693–1703.

    PubMed  CAS  Google Scholar 

  34. Rossi DJ, Hamann M. Spillover-mediated transmission at inhibitory synapses promoted by high affinity α6 subunit GABAa receptors and glomerular geometry. Neuron 1998; 20: 783–795.

    Article  PubMed  CAS  Google Scholar 

  35. Barbour B, Hausser M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci 1997; 20: 377–384.

    Article  PubMed  CAS  Google Scholar 

  36. Overstreet LS, Kinney GA, Liu Y-B, Billups D, Slater NT. Glutamate transporters contribute to the time course of synaptic transmission in cerebellar granule cells. J Neurosci 1999; 19: 9663–9673.

    PubMed  CAS  Google Scholar 

  37. Jakab RL, Hamori J. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat Embryol 1988; 179: 81–88.

    Article  PubMed  CAS  Google Scholar 

  38. Mitchell K, Silver RA. GABA spillover from single inhibitory axons suppresses low-frequency excitatory transmission at the cerebellar glomerulus. J Neurosci 2000; 20: 8651–8658.

    PubMed  CAS  Google Scholar 

  39. Mitchell SJ, Silver RA. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 2000; 404: 498–502.

    Article  PubMed  CAS  Google Scholar 

  40. Ohishi H, Ogawa-Meguro R, Shigemoto R, Kaneko T, Nakanishi S, Mizuno N. Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron 1994; 13: 55–66.

    Article  PubMed  CAS  Google Scholar 

  41. DiGregorio DA, Nusser Z, Silver RA. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 2002; 35: 521–533.

    Article  PubMed  CAS  Google Scholar 

  42. De Schutter E, Vos BP, Maex R. The function of cerebellar Golgi cells revisited. Prog Brain Res 2000; 124: 81–93.

    PubMed  Google Scholar 

  43. Eccles JC, Llinas R, Sasaki K. The mossy fibre-granule cell relay of the cerebellum and its inhibitory control by Golgi cells. Exp Brain Res 1966; 1: 82–101.

    PubMed  CAS  Google Scholar 

  44. Albus JS. A theory of cerebellar function. Math Biosci 1971; 10: 25–61.

    Article  Google Scholar 

  45. Marr DA. A theory of cerebellar cortex. J Physiol 1969; 202: 437–470.

    PubMed  CAS  Google Scholar 

  46. Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M. Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature 2001; 409: 88–92.

    Article  PubMed  CAS  Google Scholar 

  47. Hamann M, Rossi DJ, Attwell PJE. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 2002; 33: 625–633.

    Article  PubMed  CAS  Google Scholar 

  48. De Schutter E. Cerebellar cortex: computation by extrasynaptic inhibition? Curr Biol 2002; 12: R363–5.

    Article  PubMed  Google Scholar 

  49. Vos BP, Volny-Luraghi A, Maex R, De Schutter E. Precise spike timing of tactile-evoked cerebellar Golgi cell responses: a reflection of combined mossy fiber and parallel fiber activation? Prog Brain Res 2000; 124: 95–105.

    PubMed  CAS  Google Scholar 

  50. Maex R, De Schutter E. Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 1998; 80: 2521–2537.

    PubMed  CAS  Google Scholar 

  51. Maex R, Vos BP, De Schutter E. Weak common parallel fibre synapses explain the loose synchrony observed between rat cerebellar Golgi cells. J Physiol 2000; 523: 175–192.

    Article  PubMed  CAS  Google Scholar 

  52. Vos BP, Maex R, Volny-Luraghi A, De Schutter E. Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 1999; 19: RC6: 1–5.

    Google Scholar 

  53. Volny-Luraghi A, Maex R, Vos BP, De Schutter E. Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex. Neuroscience 2002; 113: 363–373.

    Article  PubMed  CAS  Google Scholar 

  54. Dumoulin A, Triller A, Dieudonné S. IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 2001; 21: 6045–6057.

    PubMed  CAS  Google Scholar 

  55. Lugaro E. Sulle connessioni tra gli elemente nervosi della corteccia cerebellare con considerazioni generali sul significato fisiologico dei rapporti tra gli elementi nervosi. Rivista Sperimentale di Freniatria 1894; 20: 297–331.

    Google Scholar 

  56. Sahin M, Hockfield S. Molecular identification of the Lugaro cell in the cat cerebellar cortex. J Comp Neurol 1990; 301: 575–584.

    Article  PubMed  CAS  Google Scholar 

  57. Geurts FJ, Timmermans J-P, Shigemoto R, De Schutter E. Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum. Neuroscience 2001; 104: 499–512.

    Article  PubMed  CAS  Google Scholar 

  58. Lainé J, Axelrad H. Morphology of the Golgi-impregnated Lugaro cell in the rat cerebellar cortex: a reappraisal with a description of its axon. J Comp Neurol 1996; 375: 618–640.

    Article  PubMed  Google Scholar 

  59. Dieudonné S, Dumoulin A. Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 2000; 20: 1837–1848.

    PubMed  Google Scholar 

  60. Lange W. The myelinated parallel fibers of the cerebellar cortex and their regional distribution. Cell Tissue Res 1976; 166: 489–496.

    Article  PubMed  CAS  Google Scholar 

  61. Lainé J, Axelrad H. Lugaro cells target basket and stellate cells in the cerebellar cortex. NeuroReport 1998; 9: 2399–2403.

    Article  PubMed  Google Scholar 

  62. Dieudonné S. Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci USA 1995; 92: 1441–1445.

    Article  PubMed  Google Scholar 

  63. McCrea RA, Bishop GA, Kitai ST. Intracellular staining of Purkinje cells and their axons with horseradish peroxidase. Brain Res 1976; 118: 132–136.

    Article  PubMed  CAS  Google Scholar 

  64. Larramendi LMH, Lemkey-Johnston N. The distribution of recurrent Purkinje collateral synapses in the mouse cerebellar cortex: an electron microscopic study. J Comp Neurol 1970; 138: 451–459.

    Article  PubMed  CAS  Google Scholar 

  65. Ramón Y Cajal S. Histologie du Système Nerveux de l’Homme et Vertébrés. Paris: Maloine, 1911.

    Google Scholar 

  66. Dieudonné S. Serotonergic neuromodulation in the cerebellar cortex: cellular, synaptic and molecular basis. Neuroscientist 2001; 7: 207–219.

    PubMed  Google Scholar 

  67. Neki A, Ohishi H, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N. Metabotropic glutamate receptors mGluR2 and mGluR5 are expressed in two non-overlapping populations of Golgi cells in the rat cerebellum. Neuroscience 1996; 75: 815–826.

    Article  PubMed  CAS  Google Scholar 

  68. Romano C, Sesma MA, McDonald CT, O’Malley K, Van den Pol AN, Olney JW. Distribution of metabotropic glutamate receptor mGluR5 immunoreactivity in rat brain. J Comp Neurol 1995; 355: 455–469.

    Article  PubMed  CAS  Google Scholar 

  69. Oertel WH, Schmechel DE, Mugnaini E, Tappaz ML, Kopin IJ. Immunocytochemical localization of glutamate decarboxylase in rat cerebellum with a new antiserum. Neuroscience 1981; 6: 2715–2735.

    Article  PubMed  CAS  Google Scholar 

  70. Zafra F, Aragon C, Olivares L, Danbolt NC, Gimenez C, Storm-Mathisen J. Glycine transporters are differentially expressed among CNS cells. J Neurosci 1995; 15: 3952–3969.

    PubMed  CAS  Google Scholar 

  71. Ottersen OP, Davanger S, Storm-Mathisen J. Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with (3H)glycine and (3H)GABA uptake. Exp Brain Res 1987; 66: 211–221.

    Article  PubMed  CAS  Google Scholar 

  72. de Lacalle S, Hersh LB, Saper CB. Cholinergic innervation of the human cerebellum. J Comp Neurol 1993; 328: 364–376.

    Article  PubMed  Google Scholar 

  73. Illing RB. A subtype of cerebellar Golgi cells may be cholinergic. Brain Res 1990; 522: 267–274.

    Article  PubMed  CAS  Google Scholar 

  74. Lainé J, Axelrad H. Extending the cerebellar Lugaro cell class. Neuroscience 2002; 115: 363–374.

    Article  PubMed  Google Scholar 

  75. Nunzi MG, Shigemoto R, Mugnaini E. Differential expression of calretinin and metabotropic glutamate receptor mGluRl α defines subsets of unipolar brush cells in mouse cerebellum. J Comp Neurol 2002; 451: 189–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik De Schutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geurts, F.J., De Schutter, E. & Dieudonné, S. Unraveling the cerebellar cortex: Cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2, 290–299 (2003). https://doi.org/10.1080/14734220310011948

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220310011948

Keywords

Navigation