Skip to main content

Golgi Neurons

  • Reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

The Golgi cell is an essential cellular component of the cerebellar cortex and the only source of inhibition to the billions of granule cells forming the cortical input layer. While considered as a single neuronal class, separate from Lugaro cells, Golgi cells form a highly heterogeneous population, both morphologically and immunohistochemically. Golgi cells are interconnected by electrical synapses and connected to other cortical cell types by chemical synapses, forming feedforward and feedback inhibitory loops onto granule cells. Golgi cells are thus ideally placed to control the gain and temporal pattern of granule cell discharge in response to afferent mossy fiber activity.

In vivo Golgi cells fire irregularly and respond to peripheral stimuli with brief burst responses or prolonged pauses. In the behaving animal, the firing rate of Golgi cells is modulated and forms sensory-motor receptive fields. Furthermore, Golgi cell activity is coordinated with local field potential oscillations in the beta range both locally and along the parallel fiber beams. Detailed computer models have been generated and predict complex oscillatory behaviors of the granule cell layer network at various frequencies. The impact of these oscillations on the encoding capacity of the granular layer is still debated, and further recordings are needed to understand how Golgi cells affect granule cell spike timing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AHP:

after-hyperpolarization

AMPA:

2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid

CF:

climbing fiber

EPSC:

excitatory postsynaptic current

GABA:

gamma-aminobutyric acid

GC:

granule cell

GCL:

granule cell layer

GIRK:

G protein–coupled inwardly rectifying potassium channel

IO:

inferior olive

IPSC:

inhibitory postsynaptic current

ISI:

interspike interval

KAR:

kainate receptor

KO:

knockout

LFP:

local field potential

LTD:

long-term depression

MF:

mossy fibers

ML:

molecular layer

NMDA:

N-Methyl-D-aspartic acid

OMV:

oculomotor vermis

PF:

parallel fiber

STP:

short-term synaptic plasticity

UBC:

unipolar brush cell

VPFL:

ventral paraflocculus

References

  • Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10:670–681

    Article  CAS  PubMed  Google Scholar 

  • Aubrey KR, Rossi F, Ruivo R, Alboni S, Bellenchi G, Le Goff A, Gasnier B, Supplisson S (2007) The transporters GlyT2 and VIAAT cooporate to determine the vesicular glycinergic phenotype. J Neurosci 27(23):6273–6281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker SN, Kilner JM, Pinches EM, Lemon RN (1999) The role of synchrony and oscillations in the motor output. Exp Brain Res 128:109–117

    Article  CAS  PubMed  Google Scholar 

  • Barmack NH, Yakhnitsa V (2008) Functions of interneurons in mouse cerebellum. J Neurosci 28:1140–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastianelli E (2003) Distribution of calcium-binding proteins in the cerebellum. Cerebellum 2:242–262

    Article  CAS  PubMed  Google Scholar 

  • Beierlein M, Fioravante D, Regehr WG (2007) Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity. Neuron 54:949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billups D, Attwell D (2003) Actice release of glycine or D-serine saturates the glycine site of NMDA receptors at the cerebellar mossy fibre to granule cell synapse. Eur J Neurosci 18:2975–2980

    Article  PubMed  Google Scholar 

  • Braak H (1974) On the intermediate cells of Lugaro within the cerebellar corex of man. Cell Tissue Res 149:399–411

    Article  CAS  PubMed  Google Scholar 

  • Brickley S, Cull-Candy S, Farrant M (1996) Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. J Physiol 15:753–759

    Article  Google Scholar 

  • Bureau I (2000) Kainate receptor-mediated synatic currents in cerebellar Golgi cells are not shaped by diffusion of glutamate. Proc Natl Acad Sci U S A 97:6838–6843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cajal RY (1911) Histologie du sistéme nerveux de l’homme et des vertebras, vol 2. Maloine, Paris

    Google Scholar 

  • Cajal RY (1995) Histology of the nervous system of man and vertebrates, vol 2. Oxford University Press, New York

    Google Scholar 

  • Cesana E, Dieudonné S, Isope P, Bidoret C, D’Angelo E, Forti L (2010) Novel granule cell-Golgi cell excitatory inputs in the cerebellar granular layer. In: FENS Abstract, Pavia, vol 5:052.057

    Google Scholar 

  • Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–860

    Article  CAS  PubMed  Google Scholar 

  • Christ H (1985) Fusiform nerve cells of the granular layer in the cerebellar cortex of the baboon. Neurosci Lett 56:195–198

    Article  CAS  PubMed  Google Scholar 

  • Courtemanche R (2005) Local field potential oscillations in primate cerebellar cortex: synchronization with cerebral cortex during active and passive expectancy. J Neurophysiol 93:2039–2052

    Article  PubMed  Google Scholar 

  • Courtemanche R, Pellerin JP, Lamarre Y (2002) Local field potential oscillations in primate cerebellar cortex: modulation during active and passive expectancy. J Neurophysiol 88:771–782

    Article  PubMed  Google Scholar 

  • Courtemanche R, Chabaud P, Lamarre Y (2009) Synchronization in primate cerebellar granule cell layer local field potentials: basic anisotropy and dynamic changes during active expectancy. Front Cell Neurosci 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Crook JD, Hendrickson A, Erickson A, Possin D, Robinson FR (2007) Purkinje cell axon collaterals terminate on Cat-301+ neurons in Macaca monkey cerebellum. Neuroscience 149:834–844

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo E (2008) The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Front Neurosci 2:35–46

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Angelo E, De Zeeuw CI (2009) Timing and plasticity in the cerebellum: focus on the granular layer. Trends Neurosci 32:30–40

    Article  PubMed  Google Scholar 

  • D’Angelo E, De Filippi G, Rossi P, Taglietti V (1995) Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. J Physiol 484(Pt 2):397–413

    Article  PubMed  PubMed Central  Google Scholar 

  • De Camilli P, Miller PE, Levitt P, Walter U, Greengard P (1984) Anatomy of cerebellar Purkinje cells in the rat determined by a specific immunohistochemical marker. Neuroscience 11:761–817

    Article  PubMed  Google Scholar 

  • Dean I, Robertson SJ, Edwards FA (2003) Serotonin drives a novel GABAergic synaptic current recorded in rat cerebellar purkinje cells: a Lugaro cell to Purkinje cell synapse. J Neurosci 23:4457–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dieudonné S (1995) Glycinergic synaptic currents in Golgi cells of the rat cerebellum. Proc Natl Acad Sci U S A 92:1441–1445

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieudonné S (1998) Submilisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. J Physiol 510:845–866

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieudonné S, Dumoulin A (2000) Serotonine-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20:1837–1848

    Article  PubMed  PubMed Central  Google Scholar 

  • DiGregorio DA, Nusser Z, Silver RA (2002) Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35:521–533

    Article  CAS  PubMed  Google Scholar 

  • Dino MR, Willard FH, Mugnaini E (1999) Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex. J Neurocytol 28:99–123

    Article  CAS  PubMed  Google Scholar 

  • Dino M, Nunzi M, Anelli R, Mugnaini E (2000) Unipolar brush cells of the vestibulocerebellum: afferents and targets. Prog Brain Res 124:123–137

    Article  CAS  PubMed  Google Scholar 

  • Dugué GP (2005) Target-dependent use of coreleased inhibitory transmitters at central synapses. J Neurosci 25:6490–6498

    Article  PubMed  PubMed Central  Google Scholar 

  • Dugué GP, Brunel N, Hakim V, Schwartz E, Chat M, Levesque M, Courtemanche R, Lena C, Dieudonné S (2009) Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron 61:126–139

    Article  PubMed  Google Scholar 

  • Dumoulin A, Triller A, Dieudonné S (2001) IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J Neurosci 21:6045–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles IC, Llinas R, Sasaki K (1964) Golgi cell inhibition in the cerebellar cortex. Nature 204:1265–1266

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebllum as a neuronal machine. Springer, Berlin

    Book  Google Scholar 

  • Edgley SA, Lidierth M (1987) The discharges of cerebellar Golgi cells during locomotion in the cat. J Physiol 392:315–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekerot C, Jörntell H (2003) Synaptic input to cerebellar Lugaro and Golgi cells studied with whole cell recording in vivo. Abstract viewer. Society for Neuroscience, Washington, DC

    Google Scholar 

  • Farrant M, Brickley S (2003) Properties of GABAA receptor-mediated transmission at newly formed Golgi – granule cell synapses in the cerebellum. Neuropharmacology 44(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Forti L (2006) Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J Physiol 574:711–729

    Article  CAS  PubMed  Google Scholar 

  • Fox CA (1959) The intermediate cells of Lugaro in the cerebellar cortex of the monkey. J Comp Neurol 122:39–53

    Article  Google Scholar 

  • Galliano E, Mazzarello P, D’Angelo E (2010) Discovery and rediscoveries of Golgi cells. J Physiol 588:3639–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geurts FJ, Timmermans J-P, Shigemoto R, De Schutter E (2001) Morphological and neurochemical differentiation of large granular layer interneurons in the adult rat cerebellum. Neuroscience 104:499–512

    Article  CAS  PubMed  Google Scholar 

  • Geurts FJ, De Schutter E, Dieudonné S (2003) Unrevealing the cerebellar cortex: cytology and cellular physiology of large-sized interneurons in the granular layer. Cerebellum 2:290–299

    Article  PubMed  Google Scholar 

  • Golgi C (1874) Sulla fina anatomia del cervelletto umano. Archivio Italiano per le Malattie Nervose 2:90–107

    Google Scholar 

  • Gross J, Tass PA, Salenius S, Hari R, Freund HJ, Schnitzler A (2000) Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J Physiol 527(Pt 3):623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hámori J, Szentagothai J (1966) Identification under the electron microscope of climbing fibers and their synaptic contacts. Exp Brain Res 1:65–81

    Article  PubMed  Google Scholar 

  • Hámori J, Szentágothai J (1966) Participation of Golgi neuron processes in the cerebellar glomeruli: an electron microscope study. Exp Brain Res 2:35–48

    Article  PubMed  Google Scholar 

  • Hartmann MJ, Bower JM (1998) Oscillatory activity in the cerebellar hemispheres of unrestrained rats. J Neurophysiol 80:1598–1604

    Article  CAS  PubMed  Google Scholar 

  • Hawkes R, Leclerc N (1989) Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex. Brain Res 476:279–290

    Article  CAS  PubMed  Google Scholar 

  • Heine SA, Highstein SM, Blazquez PM (2010) Golgi cells operate as state-specific temporal filters at the input stage of the cerebellar cortex. J Neurosci 30:17004–17014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockfield S (1987) A Mab to a unique cerebellar neuron generated by immunosuppression and rapid immunization. Science 237:67–70

    Article  CAS  PubMed  Google Scholar 

  • Holtzman T (2006) Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J Physiol 574:491–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzman T, Mostofi A, Phuah CL, Edgley SA (2006) Cerebellar Golgi cells in the rat receive multimodal convergent peripheral inputs via the lateral funiculus of the spinal cord. J Physiol 577:69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holtzman T, Cerminara NL, Edgley SA, Apps R (2008) Characterization in vivo of bilaterally branching pontocerebellar mossy fibre to Golgi cell inputs in the rat cerebellum. Eur J Neurosci 29:328–339

    Article  PubMed  Google Scholar 

  • Holtzman T, Sivam V, Zhao T, Frey O, Dow van der Wal P, Derooj NF, Dalley JW, Edgley SA (2011) Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell – granule cell loops. J Physiol 589(Pt 15):3837–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda T, Yamazaki T, Tanaka S, Nagao S, Nishino T (2011) Stimulus-dependent state transition between synchronized oscillation and randomly repetitive burst in a model cerebellar granular layer. PLoS Comput Biol 7:e1002087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illing R-B (1990) A subtype of cerebellar Golgi cells may be cholinergic. Brain Res 522:267–274

    Article  CAS  PubMed  Google Scholar 

  • Kalmbach BE, Voicu H, Ohyama T, Mauk MD (2011) A subtraction mechanism of temporal coding in cerebellar cortex. J Neurosci 31:2025–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanichay RT, Silver RA (2008) Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J Neurosci 28:8955–8967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lainé J, Axelrad H (1996) Morphology of the Golgi-impregnated Lugaro cell in the rat cerebllar cortex: a reappraisal with a description of its axon. J Comp Neurol 375:618–640

    Article  PubMed  Google Scholar 

  • Lainé J, Axelrad H (1998) Lugaro cells target basket cells and stellate cells in the cerebellar cortex. Neuroreport 9:2399–2403

    Article  PubMed  Google Scholar 

  • Lainé J, Axelrad H (2002) Extending the cerebellar Lugaro cell class. Neuroscience 115:363–374

    Article  PubMed  Google Scholar 

  • Laine J, Axelrad H, Rahbi N (1992) Intermediate cells of Lugaro are present in the immature rat cerebellar cortex at an earlier stage than previously thought. Neurosci Lett 145:225–228

    Article  CAS  PubMed  Google Scholar 

  • Larramendi LM, Lemkey-Johnston N (1970) The distribution of recurrent Purkinje collateral synapses in the mouse cerebellar cortex: an electron microscopic study. J Comp Neurol 138:451–459

    Article  CAS  PubMed  Google Scholar 

  • Lemkey Johnston N, Larramendi LM (1968) The separation and identification of fractions of nonmyelinated axons from the cerebellum of the cat. Exp Brain Res 5:326–340

    CAS  PubMed  Google Scholar 

  • Lemkey-Johnston N, Larramendi LM (1968) Types and distribution of synapses upon basket and stellate cells of the mouse cerebellum: an electron microscopic study. J Comp Neurol 134:73–112

    Article  CAS  PubMed  Google Scholar 

  • Lugaro E (1894) Sulla connessioni tra gli elementi nervosi della corticcia cerebellare con considerazioni generali sul significato fisiologico dei rapporti tra gli elementi nervosi. Riv sper de freniat Reggio-Emilia 20:297–331

    Google Scholar 

  • Maex R, De Schutter E (1998) Synchronization of Golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. J Neurophysiol 80:2521–2537

    Article  CAS  PubMed  Google Scholar 

  • Maex R, De Schutter E (2005) Oscillations in the cerebellar cortex: a prediction of their frequency bands. Prog Brain Res 148:181–188

    Article  PubMed  Google Scholar 

  • Maex R, Vos BP, De Schutter E (2000) Weak common parallel fibre synapses explain the loose synchrony observed between rat cerebellar Golgi cells. J Physiol 523(Pt 1):175–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli J, D’Angelo E (2007) The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J Neurosci 27:1285–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mapelli J, Gandolfi D, D’Angelo E (2009) Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. J Neurophysiol 103:250–261

    Article  PubMed  Google Scholar 

  • Marple-Horvat DE, Stein JF (1987) Cerebellar neuronal activity related to arm movements in trained rhesus monkeys. J Physiol 394:351–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsden JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P (2000) Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain 123(Pt 7):1459–1470

    Article  PubMed  Google Scholar 

  • McIntire S, Reimer R, Schuske K, Edwards R, Jorgensen E (1997) Identification and characterization of the vesicular GABA transporter. Nature 23:870–876

    Article  Google Scholar 

  • Medina JF, Garcia KS, Nores WL, Taylor NM, Mauk MD (2000) Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation. J Neurosci 20:5516–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melik-Musyan AB, Fanardzhyan VV (2004) Morphological characteristics of Lugaro cells in the cerebellar cortex. Neurosci Behav Physiol 34:633–638

    Article  CAS  PubMed  Google Scholar 

  • Menuz K, O’Brien JL, Karmizadegan S, Bredt DS, Nicoll RA (2008) TARP redundancy is critical for maintaining AMPA receptor function. J Neurosci 28:8740–8746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midtgaard J (1992) Membrane properties and synaptic responses of Golgi cells and stellate cells in the turtle cerebellum in vitro. J Physiol 457:329–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long-term adaptive changes in primate vestibuloocular reflex. III Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43:1437–1476

    Article  CAS  PubMed  Google Scholar 

  • Misra C, Brickley SG, Farrant M, Cull-Candy SG (2000) Identification of subunits contributing to synaptic and extrasynaptic NMDA receptors in Golgi cells of the rat cerebellum. J Physiol 524(Pt 1):147–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 8:174–180

    Article  Google Scholar 

  • Neki A, Ohishi H, Kaneko T, Shigemoto R, Nakanishi S, Mizuno N (1996) Metabotropic glutamate receptors mGluR2 and mGluR5 are expressed in two non-overlapping populations of Golgi cells in the rat cerebellum. Neuroscience 75:815–826

    Article  CAS  PubMed  Google Scholar 

  • Nusser Z, Roberts J, Baude A, Richards J, Somogyi P (1995) Relative densities of synaptic and extrasynaptic GABAA receptors on cerebellar granule cells as determined by a quantitative immunogold method. J Neurosci 15:2948–2960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor SM, Berg RW, Kleinfeld D (2002) Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking. J Neurophysiol 87:2137–2148

    Article  PubMed  Google Scholar 

  • Ottersen OP, Davanger S, Storm-Mathisen J (1987) Glycine-like immunoreactivity in the cerebellum of rat and Senegalese baboon, Papio papio: a comparison with the distribution of GABA-like immunoreactivity and with [3H] glycine and [3H] GABA uptake. Exp Brain Res 66:211–221

    Article  CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J, Somogyi P (1988) Colocalization of glycine-like and GABA-like immunoreactivities in Golgi terminals in the rat cerebellum: a postembedding light and electron microscopic study. Brain Res 450:342–353

    Article  CAS  PubMed  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex. Springer, New York

    Book  Google Scholar 

  • Pellerin JP, Lamarre Y (1997) Local field potential oscillations in primate cerebellar cortex during voluntary movement. J Neurophysiol 78:3502–3507

    Article  CAS  PubMed  Google Scholar 

  • Prsa M, Dash S, Catz N, Dicke PW, Thier P (2009) Characteristics of responses of golgi cells and mossy fibers to eye saccades and saccadic adaptation recorded from the posterior vermis of the cerebellum. J Neurosci 29:250–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rancz EA, Ishikawa T, Duguid I, Chadderton P, Mahon S, Hausser M (2007) High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450:1245–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robberechts Q, Wijnants M, Giugliano M, De Schutter E (2010) Long-term depression at parallel fiber to golgi cell synapses. J Neurophysiol 104:3413–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ros H, Sachdev RNS, Yu Y, Sestan N, McCormick DA (2009) Neocortical networks entrain neuronal circuits in cerebellar cortex. J Neurosci 29:10309–10320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruigrok TJ, Hensbroek RA, Simpson JI (2011) Spontaneous activity signatures of morphologically identified interneurons in the vestibulocerebellum. J Neurosci 31:712–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagne C, El Mestikawy S, Isambert M, Hamon M, Henry J, Giros B, Gasnier B (1997) Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases. FEBS Lett 10:177–183

    Article  Google Scholar 

  • Sahin M, Hockfield S (1990) Molecular identification of the Lugaro cell in the cat carebellar cortex. J Comp Neurol 301:575–584

    Article  CAS  PubMed  Google Scholar 

  • Salenius S, Hari R (2003) Synchronous cortical oscillatory activity during motor action. Curr Opin Neurobiol 13:678–684

    Article  CAS  PubMed  Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6:285–296

    Article  CAS  PubMed  Google Scholar 

  • Schoffelen JM, Oostenveld R, Fries P (2005) Neuronal coherence as a mechanism of effective corticospinal interaction. Science 308:111–113

    Article  CAS  PubMed  Google Scholar 

  • Schulman JA, Bloom FE (1981) Golgi cells of the cerebellum are inhibited by inferior olive activity. Brain Res 210:350–355

    Article  CAS  PubMed  Google Scholar 

  • Shinoda Y, Sugihara I, Wu H-S, Sugiuchi Y (2000) The entire trajectory of single climbing and mossy fibres in the cerebellar nuclei and cortex. Prog Brain Res 124:173–186

    Article  CAS  PubMed  Google Scholar 

  • Sillitoe RV, Chung SH, Fritschy JM, Hoy M, Hawkes R (2008) Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci 28:2820–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simat M, Parpan F, Fritschy JM (2007) Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum. J Comp Neurol 500:71–83

    Article  CAS  PubMed  Google Scholar 

  • Simoes de Souza F, De Schutter E (2011) Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations. Neural Syst Circuit 1:7

    Article  Google Scholar 

  • Simpson JI, Hulscher HC, Sabel-Goedknegt E, Ruigrok TJ (2005) Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Prog Brain Res 148:329–340

    Article  CAS  PubMed  Google Scholar 

  • Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D’Angelo E (2007a) Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Front Cell Neurosci 1:2

    PubMed  PubMed Central  Google Scholar 

  • Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D’Angelo E (2007b) Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar Golgi cells: simulations of their impact in vivo. Front Cell Neurosci 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Solinas S, Nieus T, D’Angelo E (2010) A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front Cell Neurosci 4:12

    PubMed  PubMed Central  Google Scholar 

  • Soteropoulos DS, Baker SN (2006) Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol 95:1194–1206

    Article  PubMed  Google Scholar 

  • Tahon K, Volny-Luraghi A, De Schutter E (2005) Temporal characteristics of tactile stimuli influence the response profile of cerebellar Golgi cells. Neurosci Lett 390:156–161

    Article  CAS  PubMed  Google Scholar 

  • Tahon K, Wijnants M, De Schutter E, Maex R (2011) Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input. J Neurophysiol 105:1327–1341

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kan PL, Gibson AR, Houk JC (1993) Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol 69:74–94

    Article  PubMed  Google Scholar 

  • Vervaeke K, Lőrincz A, Gleeson P, Farinella M, Nusser Z, Silver RA (2010) Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron 67:435–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volny-Luraghi A, Maex R, Vosdagger B, De Schutter E (2002) Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex. Neuroscience 113:363–373

    Article  CAS  PubMed  Google Scholar 

  • Vos BP, Maex R, Volny-Luraghi A, De Schutter E (1999a) Parallel fibers synchronize spontaneous activity in cerebellar Golgi cells. J Neurosci 19:RC6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vos BP, Volny-Luraghi A, De Schutter E (1999b) Cerebellar Golgi cells in the rat: receptive fields and timing of response to facial stimulation. Eur J Neurosci 11:2621–2634

    Article  CAS  PubMed  Google Scholar 

  • Vos BP, Volny-Luraghi A, Maex R, De Schutter E (2000) Precise spike timing of tactile-evoked cerebellar Golgi cell responses: a reflection of combined mossy fiber and parallel fiber activation? Prog Brain Res 124:95–105

    Article  CAS  PubMed  Google Scholar 

  • Walsh JV, Houk JC, Mugnaini E (1974) Identification of unitary potentials in turtle cerebellum and correlations with structures in granular layer. J Neurophysiol 37:30–47

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 39:821–829

    Article  CAS  PubMed  Google Scholar 

  • Watanabe D, Inokawa H, Hashimoto K, Suzuki N, Kano M, Shigemoto R, Hirano T, Toyama K, Kaneko S, Yokoi M, Moriyoshi K, Suzuki M, Kobayashi K, Nagatsu T, Kreitman RJ, Pastan I, Nakanishi S (1998) Ablation of cerebellar Golgi cells disrupts synaptic integration involving GABA inhibition and NMDA receptor activation in motor coordination. Cell 95:17–27

    Article  CAS  PubMed  Google Scholar 

  • Wilkin G, Csillag A, Balazs R, Kingsbury A, Wilson J, Johnson A (1981) Localization of high affinity [3H] glycine transport sites in the cerebellum cortex. Brain Res 216:11–33

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Edgley SA (2008) Climbing fibre-dependent changes in Golgi cell responses to peripheral stimulation. J Physiol 586:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Tanaka S (2007) A spiking network model for passage-of-time representation in the cerebellum. Eur J Neurosci 26:2279–2292

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaremba S, Guimaraes A, Kalb RG, Hockfield S (1989) Characterisation of an activity-dependent, neuronal surface proteoglican indentified with monoclonal antibody Cat-301. Neuron 2:1207–1219

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU Marie Curie ITN network CEREBNET funding to K.P. and by the ANR grant CECOMOD to S.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Pietrajtis .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pietrajtis, K., Dieudonné, S. (2022). Golgi Neurons. In: Manto, M.U., Gruol, D.L., Schmahmann, J.D., Koibuchi, N., Sillitoe, R.V. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-23810-0_34

Download citation

Publish with us

Policies and ethics