Skip to main content
Log in

Plant regeneration from leaf petioles in Camptotheca acuminata

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Camptothecin, produced by Camptotheca acuminata, is a pharmaceutically important compound. Transgenic technology has potential uses for the enhancement of camptothecin production; however, an efficient plant regeneration protocol for C. acuminata is not currently available. Factors that affected successful seedling germination were evaluated. The regeneration potential of various parts of seedlings was tested. Camptothecin production in regenerated plants was compared to its production in calluses and the original seedlings. Dark incubation and seed coat removal led to a higher germination rate and a higher survival rate after germination. The best shoot induction medium was found to be Gamborg's B5 medium+8.9 μM benzyladenine. Among the calluses induced from various parts of seedlings, leaf petiole calluses, leaf dise calluses, and cotyledon calluses regenerated shoots, but internode calluses did not. Furthermore, leaf petiole calluses and leaf dise calluses regenerated normal shoots, while cotyledon calluses regenerated hyperhydric shoots. Moreover, leaf petiole calluses had a higher shoot regeneration rate, 50% versus 9%, and a higher shoot number, 6.2±0.5 versus 2.0±0.3, than did leaf dise calluses on the best shoot induction medium. It took 4–6 wk to regenerate shoots after transfer into shoot induction media. Camptothecin concentration in the regenerated plants was significantly higher than that in the calluses and similar to that in the original seedlings. In conclusion, leaf petioles provide efficient plant regeneration of C. acuminata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonga, J. M. In vitro culture of trees. Boston: Kluwer Academic Publishers: 1992:68–70.

    Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojima, K. Nutritional requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Gunasekera, S. P.; Badawi, M. M.; Cordell, G. A.; Farnsworth, N. R.; Chitnis, M. Plant anticancer agents X. Isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneana. J. Nat. Prod. 42:475–477; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Jafari, M. A.; Kiss, J.; Gergacz, J.; Heszky, L. E. High efficiency callus induction and plant regeneration in petiole culture of four poplar genotypes. Acta Biol. Hungarica 46:51–59; 1995.

    CAS  Google Scholar 

  • Li, S.; Yi, Y.; Wang, Y.; Zhang, Z.; Beasley, R. S. Camptothecin accumulation and variations in Camptotheca. Planta Med. 68:1010–1016; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z.; Adams, J. C. Camptothecin yield and distribution within Camptotheca acuminata tree cultivated in Louisiana. Can. J. Bot. 74:360–365; 1996.

    CAS  Google Scholar 

  • Liu, Z.; Adams, J. C. Seed source variation in camptothecin concentrations of nursery grown Camptotheca acuminata seedlings. New Forests 16:167–175; 1998.

    Article  Google Scholar 

  • Liu, Z.; Carpenter, S. B.; Bourgeois, W. J.; Yu, Y.; Constantin, R. J.; Falcon, M. J.; Adams, J. C. Variations in the secondary metabolite camptothecin in relation to tissue age and season in Camptotheca acuminata (Nyssaceae). Tree Physiol. 18:265–270; 1998.

    PubMed  CAS  Google Scholar 

  • Liu, Z.; Carpenter, S. B.; Constantin, R. J. Alkaloid production in Camptotheca acuminata seedlings in response to shading and flooding. Can. J. Bot. 75:368–373; 1997.

    CAS  Google Scholar 

  • Liu, Z.; Li, Z. Micropropagation of Camptotheca acuminata Decaisne from axillary buds, shoot tips, and seed embryos in a tissue culture system. In Vitro Cell. Dev. Biol. Plant 37:84–88; 2001.

    CAS  Google Scholar 

  • Lloyd, C.; McCown, B. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb. Proc. Int. Plant Prop. Soc. 30:421–427; 1981.

    Google Scholar 

  • Lopes Cardoso, M. I.; Meijer, A. H.; Hoge, J. H. C. Agrobacterium-mediated transformation of the terpenoid indole alkaloid producing plant species Tabernaemontana pandacaqui. Plant Cell Rep. 17:150–154; 1997.

    Article  CAS  Google Scholar 

  • Lorence, A.; Medina-Bolivar, F.; Nessler, C. L. Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep. 22:437–441; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Medina-Bolivar, F.; Wright, R.; Funk, V.; Sentz, D.; Barroso, L.; Wilkins, D. T.; Petri, W.; Cramer, C. L. A non toxic lectin for antigen delivery of plant based mucosal vaccines. Vaccine 21:997–1005; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Porobo Dessai, A.; Gosukonda, R. M.; Blay, E.; Korsi Dumenyo, C.; Mcdina-bolivar, F.; Prakaslt, C. S. Plant regeneration of sweet potato (Ipomoea batatas L.) from leaf explants in vitro using a two stage protocol. Sci. Hort. 62:217–221; 1995.

    Article  Google Scholar 

  • Roja, M.; Heble, M. R. The quinoline alkaloids camptothecin and 9-methoxycamptothecin from tissue cultures and mature trees of Nothapodytes foetida. Phytochemistry 36:65–66; 1994.

    Article  CAS  Google Scholar 

  • Sakato, K.; Tanaka, H.; Mukai, N.; Misawa, M. Isolation and identification of camptothecin from cells of Camptotheca acuminata suspension cultures. Agric. Biol. Chem. 38:217–218; 1974.

    CAS  Google Scholar 

  • Tafur, S.; Nelson, J. D.; DeLong, D. C.; Svoboda, G. H. Antiviral components of Ophiorrhiza mungos: isolation of camptothecin and 10-methoxy camptothecin. Lloydia 39:261–262; 1976.

    PubMed  CAS  Google Scholar 

  • Tan, W.; Dai, C. Tissue culture technique of ornamental plants. Beijing: Chinese Forestry Press; 1997:201–230.

    Google Scholar 

  • van Hengel, A. J.; Harkes, M. P.; Wichers, H. J.; Hesselink, P. G. M.; Buitelaar, R. M. Characterization of callus formation and camptothecin production by cell lines of Camptotheca acuminata. Plant Cell Tiss. Organ Cult. 28:11–18; 1992.

    Article  Google Scholar 

  • Verberne, M. C.; Verpoorte, R.; Bol, J. F.; Mercado Blanco, J.; Linthorst, H. J. M. Overproduction of salicylic acid in plants by bacterial transgenic enhances pathogen resistance. Nat. Biotechnol. 18:779–783; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J. Am. Chem. Soc. 88:3888–3890; 1966.

    Article  CAS  Google Scholar 

  • Wiedenfeld, H.; Furmanowa, M.; Roeder, E. Camptothecin and 10-hydroxy camptothecin in callus and plantlets of Camptotheca acuminata. Plant Cell Tiss. Organ Cult. 49:213–218; 1997.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhai Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Z., Liu, Z. Plant regeneration from leaf petioles in Camptotheca acuminata . In Vitro Cell.Dev.Biol.-Plant 41, 262–265 (2005). https://doi.org/10.1079/IVP2004631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004631

Key words

Navigation