Skip to main content
Log in

Genetic transformation technology: Status and problems

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. With the recent advances in genetic engineering of plants, it is now feasible to introduce into crop plants, genes that have previously been inaccessible to the conventional plant breeder, or which did not exist in the crop of interest. This holds a tremendous potential for the genetic enhancement of important food crops. However, the availability of efficient transformation methods to introduce foreign DNA can be a substantial barrier to the application of recombinant DNA methods in some crop plants. Despite significant advances over the past decades, development of efficient transformation methods can take many years of painstaking research. The major components for the development of transgenic plants include the development of reliable tissue culture regeneration systems, preparation of gene constructs and efficient transformation techniques for the introduction of genes into the crop plants, recovery and multiplication of transgenic plants, molecular and genetic characterization of transgenic plants for stable and efficient gene expression, transfer of genes to elite cultivars by conventional breeding methods if required, and the evaluation of transgenic plants for their effectiveness in alleviating the biotic and abiotic stresses without being an environmental biohazard. Amongst these, protocols for the introduction of genes, including the efficient regeneration of shoots in tissue cultures, and transformation methods can be major bottlenecks to the application of genetic transformation technology. Some of the key constraints in transformation procedures and possible solutions for safe development and deployment of transgenic plants for crop improvement are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akella, V.; Lurquin, P. F. Expression in cowpea seedlings of chimeric transgenes after electroporation into seed-derived embryos. Plant Cell Rep. 12:110–117; 1993.

    CAS  Google Scholar 

  • Allen, G. C.; Hall, G.; Michalowski, S.; Newman, W.; Spiker, S.; Weissinger, A. K.; Thompson, W. F. High level transgene expression in plant cells: effect of strong scaffold attachment region from tobacco. Plant Cell 8:899–913; 1996.

    PubMed  CAS  Google Scholar 

  • Anandalakshmi, R.; Marathe, R.; Ge, X.; Herr, J. M.; Mau, C.; Mallory, A.; Pruss, G.; Bowman, L.; Vance, V. B. A calmodulin-related protein that suppresses post-transcriptional gene silencing in plants. Science 290:142–144; 2000.

    PubMed  CAS  Google Scholar 

  • Bass, B. Double-stranded RNA as a template for gene silencing. Cell 101:235–238; 2000.

    PubMed  CAS  Google Scholar 

  • Becker, D.; Brettscheider, R.; Lorz, H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5:299–307; 1994.

    PubMed  CAS  Google Scholar 

  • Bernstein, E.; Caudy, A.; Hammond, S.; Hannon, G. Role for a bidenate ribonuclease in the initiation step of RNA interference. Nature 409:295–296; 2001.

    Google Scholar 

  • Bevan, M.; Chilton, M. D. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187; 1983.

    CAS  Google Scholar 

  • Binns, A. N.; Thomashow, M. F. Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol. 42:575–606; 1988.

    CAS  Google Scholar 

  • Birch, R. G. Plant transformation: problems and strategies for practical application. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 48:297–326; 1997.

    PubMed  CAS  Google Scholar 

  • Blundy, K. S.; Blundy, M. A. C.; Carter, D. The expression of class-1 patatin gene fusions in transgenic potato varies with both gene and cultivar. Plant Mol. Biol. 16:153–160; 1991.

    PubMed  CAS  Google Scholar 

  • Borlaug, N. E. Feeding a world of 10 million people: the miracle ahead. Plant Tiss. Cult. Biotechnol. 3:119–127; 1997.

    Google Scholar 

  • Boulter, M. E.; Croy, E.; Simpson, P.; Shields, R.; Croy, R. R. D.; Shirsat, A. H. Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes—a comparison. Plant Sci. 70:91–99; 1990.

    CAS  Google Scholar 

  • Boynton, J. E.; Gillham, N. W.; Harris, E. H.; Hosler, J. P.; Johnson, A. M.; Jones, A. R. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538; 1988.

    PubMed  CAS  Google Scholar 

  • Brar, G. S.; Cohen, B. A. Recovery of transgenic peanut plants from elite cultivers utilizing ACCELL technology. Plant J. 5:745–753; 1994.

    Google Scholar 

  • Catlin, D.; Ochoa, O.; McCormick, S.; Quiros, C. F. Celery transformation by Agrobacterium tumefaciens: cytological and genetic analysis of transgenic plants. Plant Cell Rep. 7:100–103; 1988.

    CAS  Google Scholar 

  • Chang, S. S.; Park, S. K.; Kim, B. C.; Kang, B. J.; Kim, D. U. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J. 5:551–558; 1994.

    CAS  Google Scholar 

  • Chee, P. P.; Fober, K. A.; Slightom, J. L. Transformation of soybean (Glycine max) by Agrobacterium tumefaciens. Plant Physiol. 91:1212–1218; 1989.

    PubMed  CAS  Google Scholar 

  • Christou, P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85:13–27; 1995.

    Google Scholar 

  • Christou, P.; Swain, W. F.; Yang, N. S.; McCabe, D. E. Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl Acad. Sci. USA 86:7500–7504; 1989.

    PubMed  CAS  Google Scholar 

  • Clough, S.; Bent, J. A. F.; Dip, F. A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735; 1998.

    PubMed  CAS  Google Scholar 

  • Dale, P. J.; Irwin, J. A.; Scheffler, J. A. The experimental and commerical release of transgenic crop plants. Plant Breed. 111:1–22; 1993.

    CAS  Google Scholar 

  • Daley, M.; Knauft, V. C.; Summerfelt, K. R.; Turner, J. C. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker free transgenic plants. Plant Cell Rep. 17:489–496; 1998.

    CAS  Google Scholar 

  • Dayal, S.; Lavanya, M.; Devi, P.; Sharma, K. K. An efficient protocol for shoot regeneration and genetic transformation of pigeonpea [Cajanus cajan (L.) Millsp] using leaf explant. Plant Cell Rep. 21:1072–1079; 2003.

    PubMed  CAS  Google Scholar 

  • De Block, M.; Botterman, J.; Bandewick, M.; Dockx, J.; Thoen, C.; Gossele, V.; Rao, D.; Movva, N.; Thompson, C.; Van Montagu, M.; Lecmans, I. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:2513–2518; 1987.

    PubMed  Google Scholar 

  • De Block, M.; Debrouwer, D. Two T-DNA's co-transformed into Brassica napus by a double Agrobacterium tumefaciens are mainly integrated at the same locus. Theor. Appl. Genet. 82:257–263; 1991.

    Google Scholar 

  • De Block, M.; Debrouwer, D.; Tenning, P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91:694–701; 1989.

    PubMed  Google Scholar 

  • Desfeux, C.; Clough, S. J.; Bent, A. F. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol. 123:895–904; 2000.

    PubMed  CAS  Google Scholar 

  • Dillen, W.; Engler, G.; Van Montagu, M.; Angenon, G. Electroporation-mediated DNA delivery to seedling tissues of Phaseolus vulgaris L. (common beans). Plant Cell Rep. 15:119–124; 1995.

    CAS  Google Scholar 

  • Draper, J.; Scott, R.; Armitage, P. Plant genetic transformation and gene expression: a laboratory manual. Oxford: Blackwell Scientific Publishers; 1988.

    Google Scholar 

  • Ebinuma, H.; Sugita, K.; Matsunaga, E.; Yamakado, M. Selection of marker-free transgenic plants using the isopentenyl tranferase gene. Proc. Natl. Acad. Sci. USA 94:2117–2121; 1997.

    PubMed  CAS  Google Scholar 

  • Fagard, M.; Vaucheret, H. Systemic silencing signal(s). Plant Mol. Biol. 43:285–293; 2000.

    PubMed  CAS  Google Scholar 

  • Feldmann, K. A.; Marks, M. D. Agrobacterium-mediated transformation of germinating seeds of Arabidoposis thaliana a non-tissue culture approach. Mol. Gen. Genet. 208:1–9; 1987.

    CAS  Google Scholar 

  • Finnegan, J.; McElroy, D. Transgene inactivation: plants fight back!. Bio/Technology 12:883–888; 1994.

    Google Scholar 

  • Gleave, A. P.; Mitra, D. S.; Mudge, S. R.; Morris, B. A. M. Selectable marker-free transgenic plant without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant. Mol. Biol. 40:223–235; 1999.

    PubMed  CAS  Google Scholar 

  • Goldsbrough, A. P.; Lastrella, C. N.; Yoder, J. I. Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Bio/Technology 11:1286–1292; 1993.

    CAS  Google Scholar 

  • Goodman, R. M.; Hauptli, H.; Crossway, A. Gene transfer in crop improvement. Science 236:48–54; 1987.

    CAS  Google Scholar 

  • Grimsley, N. H.; Hohn, T.; Davies, J. W. Agrobacterium-mediated delivery of infectitious maize streak virus into maize plants. Nature 325:117; 1987.

    Google Scholar 

  • Grimsley, N. H.; Romoss, C.; Hohn, T.; Holm, B. Meristematic tissues of maize plants are most susceptible to agroinfection with maize streak virus. Bio/Technology 6:185; 1988.

    Google Scholar 

  • Hammond, S. M.; Candy, A. A.; Hannon, G. J. Post-transcriptional gene silencing by double-stranded RNA. Nat. Rev. Genet. 2:110–119; 2001.

    PubMed  CAS  Google Scholar 

  • Hansen, G.; Chilton, M. D. ‘Agrolistic’ transformation of plant cells: integration of T-strands generated in planta. Proc. Natl. Acad. Sci. USA 93:14978–14983; 1996.

    PubMed  CAS  Google Scholar 

  • Haughn, G. W.; Smith, J.; Mazur, B.; Somerville, C. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 211:266–271; 1988.

    CAS  Google Scholar 

  • Hiei, Y.; Komari, T. Transformation of monocotyledons using Agrobacterium. Int. Patent WO 94/00977; 1994.

  • Helmer, G.; Casadaban, M.; Bevan, M.; Kayes, L.; Chilton, M. D. A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli β-galactosidase in sunflower and tobacco cells. Bio/Technology 2:520–525; 1984.

    CAS  Google Scholar 

  • Herrera-Estrella, L.; De Block M.; Messens, E.; Heradsteens, J.; van Montagu, M.; Schell, J. Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995; 1983.

    PubMed  CAS  Google Scholar 

  • Herrera-Estrella, L.; Teeri, T. H.; Simpson, J. Use of reporter genes to study gene expression in plant cells. In: Gelvin, S. B.; Schilperoort, R. A.; Verma, D. P. S., eds. Plant molecular biology manual, B1. Dordrecht: Kluwer Academic Publishers; 1993; 1–22.

    Google Scholar 

  • Hess, D.; Dressler, K.; Nimmricher, R. Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Sci. 72:233–244; 1990.

    CAS  Google Scholar 

  • Hobbs, S. L. A.; Kpodar, P.; Delong, C. M. O. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol. Biol. 15:851–864; 1990.

    PubMed  CAS  Google Scholar 

  • Horsch, R. B.; Fraley, R. T.; Rogers, S. G.; Sanders, P. R.; Lloyd, A.; Hoffmann, N. Inheritance of functional foreign genes in plants. Science 223:496–498; 1984.

    CAS  Google Scholar 

  • Horsch, R. B.; Fry, J. E.; Hoffman, N. L.; Eichholtz, D.; Rogers, S. G.; Fraley, R. T. A simple and general method for transferring genes into plants. Science 227:1229–1231; 1985.

    CAS  Google Scholar 

  • Jahne, A.; Becker, D.; Brettschneider, R.; Lorz, H. Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89:525–533; 1994.

    Google Scholar 

  • Jefferson, R.; Goldsbrough, A.; Beven, M. Transcriptional regulation of patatin-1 gene in potato. Plant. Mol. Biol. 14:995–1006; 1990.

    PubMed  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Beven, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907; 1987.

    PubMed  CAS  Google Scholar 

  • Joersbo, M.; Brunstedt, J. Direct gene transfer to plant protoplasts by mild sonication. Plant Cell Rep. 9:207–210; 1990.

    CAS  Google Scholar 

  • Katavic, V.; Haughn, G. W.; Reed, D.; Martin, M.; Kunst, L In planta transformation of Arabidopsis thaliana. Mol. Gen. Genet. 245:363–370; 1994.

    PubMed  CAS  Google Scholar 

  • Khan, M. S.; Maliga, P. Fluorscent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17:910–915; 1999.

    PubMed  CAS  Google Scholar 

  • Klee, H.; Horsch, R.; Rogers, S. Agrobacterium-mediated plant transformation and its further applications to plant biology. Annu. Rev. Plant Physiol. 38:467–486; 1987.

    CAS  Google Scholar 

  • Klein, T. M.; Arentzen, R.; Lewis, P. A.; Fitzpatric-McElligott, S. Transformation of microbes, plants and animals by particle bombardment. Bio/Technology 10:286–291; 1992.

    PubMed  CAS  Google Scholar 

  • Klein, T. M.; Fromm, M. E.; Gradziel, T.; Sanford, J. C. Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. Bio/Technology 6:559–563; 1988.

    CAS  Google Scholar 

  • Kloeti, A.; Inglesias, V. A.; Wuenn, J.; Burkhardt, P. K.; Datta, S. K.; Potrykus, I. Gene transfer by electroporation into intact scutellum cells of wheat embryos. Plant Cell Rep. 12:671–675; 1993.

    CAS  Google Scholar 

  • Knoblauch, M.; Hibberd, J. M.; Gray, G. C.; Van Bel, A. J. E. A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes. Nat. Biotechnol. 17:906–909; 1999.

    PubMed  CAS  Google Scholar 

  • Komari, T.; Hiei, Y.; Saito, Y.; Murai, N.; Kumashiro, T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10:165–174; 1996.

    PubMed  CAS  Google Scholar 

  • Kung, S. D. Introduction: from hybrid plants to transgenic plants. In: Kung, S. D.; Wu, R., eds. Transgenic plants, vol. 1: engineering and utilization. San Diego: Academic Press; 1993:1–12.

    Google Scholar 

  • Levin, M.; Strauss, H. S. Overview of risk assessment and regulation of environmental biotechnology. Risk assessment in genetic engineering. New York: McGraw-Hill Inc.; 1993.

    Google Scholar 

  • Lichtenstein, C. P.; Fuller, S. L. Vectors for the genetic, engineering of plants In: Genetic engineering, vol. 6. London: Academic Press; 1987.

    Google Scholar 

  • Lindsey, K.; Gallois, P. Transformation of sugarbeet (Beta vulgaris) by Agrobacterium tumefaciens. J. Exp. Bot. 41:529–539; 1990.

    CAS  Google Scholar 

  • Lindsey, K.; Jones, M. G. K. Plant biotechnology in agriculture. Milton Keynes: Open University Press; 1989.

    Google Scholar 

  • Livingstone, D. M.; Birch, R. G. Plant regeneration and microprojectile mediated gene transfer in embryonic leaflets of peanut (Arachis hypogea L.). Aust. J. Plant Physiol. 22:585–591; 1995.

    CAS  Google Scholar 

  • Lu, H. J.; Zhou, R.; Gong, Z. X.; Upadhyaya, N. M.; Lu, H. J.; Zhou, X. R.; Gong, Z. X. Generation of selectable markerfree transgenic rice using double right-border (DRB) binary vectors. Aust. J. Plant Physiol. 28:241–248; 2001.

    CAS  Google Scholar 

  • Maniatis, T.; Goodbourn, S.; Fischer, J. A. Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245; 1987.

    PubMed  CAS  Google Scholar 

  • Matthews, P. R.; Wang, M. B.; Waterhouse, P. M.; Thornton, S.; Fieg, S. J.; Gubler, F.; Jacobsen, J. V.; Wang, M. B. Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs' on a standard Agrobacterium transformation vector. Mol. Breed. 7:195–202; 2001.

    CAS  Google Scholar 

  • Matzke, M. A.; Matzke, A. J. M. How and why do plants inactivate homologous (trans) genes?. Plant Physiol. 107:679–685; 1995.

    PubMed  CAS  Google Scholar 

  • McCormac, A. C.; Fowler, M. R.; Chen, D. F.; Elliott, M. C. Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res. 10:143–155; 2001.

    PubMed  CAS  Google Scholar 

  • Mengiste, T.; Paszkowski, J. Prospects for the precise engineering of plant genomes by homologous recombination. Biol. Chem. 380:749–758; 1999.

    PubMed  CAS  Google Scholar 

  • Meyer, P. Variation of transgene expression in plants. Euphytica 85:359–366; 1995.

    CAS  Google Scholar 

  • Meyer, P.; Walgenbach, E.; Bussmann, K. Synchronized tobacco protoplasts are efficiently transformed by DNA. Mol. Gen. Genet. 201:93–95; 1985.

    Google Scholar 

  • Miki, B. L.; Labbe, H.; Hatton, J.; Ouellet, T.; Gabard, J.; Sunohara, G.; Charest, P. J.; Iyer, V. N. Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor. Appl. Genet. 80:449–458; 1990.

    CAS  Google Scholar 

  • Miller, M.; Tagliani, L.; Wang, N.; Berka, B.; Bidney, D.; Zhao, Z. Y. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 11:381–396; 2002.

    PubMed  CAS  Google Scholar 

  • Miller, M. W.; Voorhees, S. M.; Cartensen, E. L.; Eames, F. A. A histological study of the effect of ultrasound on growth of Vicia faba roots. Rad. Bot. 14:201–206; 1974.

    Google Scholar 

  • Moloney, M. M.; Walker, J. M.; Sharma, K. K. An efficient method for Agrobacterium-mediated transformation in Brassica napus cotyledon explants. Plant Cell Rep. 8:238–242; 1989.

    CAS  Google Scholar 

  • Morel, J.; Mourrain, P.; Beclin, C.; Vaucheret, H. DNA methylation and chromatin structure affect transcriptional and posttranscriptional transgene silencing in Arabidopsis. Curr. Biol. 10:1591–1594; 2000.

    PubMed  CAS  Google Scholar 

  • Neuhaus, G.; Spangenberg, G.; Scheid, O. M.; Schweiger, H. G. Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor. Appl. Genet. 75:30–36; 1987.

    Google Scholar 

  • Okada, K.; Takebe, I.; Nagata, T. Expression and integration of genes introduced into highly synchronized plant protoplasts. Mol. Gen. Genet. 205:398–403; 1986.

    CAS  Google Scholar 

  • Ow, D. W.; Wodd, K. V.; De Luca, M.; De Wet, J. R.; Helinski, D. R.; Howell, S. H. Transient and stable expression of the firefly luciferase gene in plant cell and transgenic plants. Science 234:856–859; 1986.

    CAS  Google Scholar 

  • Parrott, W. A.; Hoffman, L. M.; Hilbrandt, D. F.; William, E. G.; Collins, G. B. Effect of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Rep. 7:615–617; 1989.

    CAS  Google Scholar 

  • Potrykus, I. Gene transfer to plants: assessment and perspectives. Physiol. Plant. 79:125–134; 1990.

    CAS  Google Scholar 

  • Potrykus, I. Gene transfer to plants: assessment of published approaches and results. Annu. Rev. Plant Physiol. Mol. Biol. 42:205–225; 1991.

    CAS  Google Scholar 

  • Potrykus, I.; Shillito, R. d. Protoplasts: isolation, culture and plant regeneration. Methods Enzymol. 118:459–578; 1989.

    Google Scholar 

  • Rao, K. V. Transient gene expression in electroporated immature embryos of rice (Oryza sativa L.). J. Plant Physiol. 147:71–74; 1995.

    CAS  Google Scholar 

  • Rao, S. K.; Rohini, V. K. Agrobacterium mediated transformation of sunflower (Helianthus annus L.): a simple protocol. Ann. Bot. 83:347–354; 1999.

    CAS  Google Scholar 

  • Ratcliff, F.; Harrison, B. D.; Baulcombe, D. C. A similarity between viral defense and gene silencing in plants. Science 276:1558–1560; 1997.

    CAS  Google Scholar 

  • Reichel, C.; Mathur, J.; Eckes, P.; Langenhemper, K.; Koncz, C.; Schell, J.; Reiss, B.; Maas, C. Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono-and dicotyledonous plant cells. Proc. Natl Acad. Sci. USA 93:5888–5893; 1996.

    PubMed  CAS  Google Scholar 

  • Reiss, B.; Sprengel, R.; Will, H. A new sensitive method for quantitative and qualitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30:211; 1984.

    PubMed  CAS  Google Scholar 

  • Rohini, V. K.; Rao, S. K. Embryo transformation—a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann. Bot. 86:1043–1049; 2000a.

    CAS  Google Scholar 

  • Rohini, V. K.; Rao, S. K. Transformation of peanut (Arachis hypogaea L.): a non-tissue culture based approach for generating transgenic plants. Plant Sci. 150:41–49; 2000b.

    CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbour Press; 1989.

    Google Scholar 

  • Sanford, J. C. Biolistic plant transformation. Physiol. Plant. 79:206–209; 1990.

    CAS  Google Scholar 

  • Schibler, U.; Sierra, F. Alternative promoters in development gene expression. Annu. Rev. Genet. 21:237–257; 1987.

    PubMed  CAS  Google Scholar 

  • Seki, M.; Shigemoto, N.; Komeda, Y.; Imamura, J.; Morikawa, H. Transgenic Arabidopsis thaliana plants obtained by particle bombardment mediated transformation. Appl. Microbiol. Biotechnol. 36:228–230; 1991.

    CAS  Google Scholar 

  • Shah, D. M.; Horch, R. B.; Klee, H. J.; Kishore, G. M.; Winter, J. A.; Tuner, N. E.; Hironaka, C. M.; Sander, P. R.; Gasser, C. S.; Aykent, S.; Siegel, N. R.; Rogers, S. G.; Fraley, R. T. Engineering herbicide tolerance in transgenic plants. Science 233:478–481; 1986.

    CAS  Google Scholar 

  • Sharma, K. K.; Anjaiah, V. An efficient method for the production of transgenic plants of peanut (Arachis hypogea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci. 159:7–19; 2000.

    PubMed  CAS  Google Scholar 

  • Sharma, K. K.; Bhojwani, S. S.; Thorpe, T. A. High frequency regeneration of shoots and roots from cotyledon explants of Brassica juncea (L.) Czern. Plant Sci. 66:247–253; 1990.

    CAS  Google Scholar 

  • Shimamoto, K.; Terada, R.; Izawa, T.; Fujimoto, H. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 33:274–276; 1989.

    Google Scholar 

  • Sidorov, V. A.; Kasten, D.; Pang, S. Z.; Hajdukiewicz, P. T.; Staub, J. M.; Nehra, N. S. Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J. 19:209–216; 1999.

    PubMed  CAS  Google Scholar 

  • Sikdar, S. R.; Serino, G.; Chaudhuri, S.; Maliga, P. Plastid transformation in aArabidopsis thaliana. Plant Cell Rep. 18:20–24; 1998.

    CAS  Google Scholar 

  • Skoog, F.; Miller, C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11:118–131; 1957.

    Google Scholar 

  • Songstad, D. D.; Halaka, F. G.; DeBoer, D. L.; Hinchee, M. A. W.; Ford-Santino, C. G. Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. Plant Cell Tiss. Organ Cult. 33:195–201; 1993.

    CAS  Google Scholar 

  • Stam, J. M.; Maglia, P. Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. Plant Cell 4:39–45; 1992.

    Google Scholar 

  • Stoger, F.; Fink, C.; Pfosser, M.; Heberle, B. E. Plant transformation by particle bombardment of embryogenic pollen. Plant Cell Rep. 14:273–278; 1995.

    Google Scholar 

  • Svab, Z.; Hajdukiewicz, P. T.; Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl Acad. Sci. USA 87:8526–8530; 1990.

    PubMed  CAS  Google Scholar 

  • Tomes, D. T.; Weissinger, A. K.; Ross, M.; Higgins, R.; Drummond, B. J.; Schaff, S. Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol. Biol. 14:261–268; 1990.

    PubMed  CAS  Google Scholar 

  • Torbert, H. A.; Reeves, D. W.; Mulvaney, R. L. Winter legume cover crop benefits to corn: rotation vs. fixed nitrogen effects. Agron. J. 88:527–535; 1996.

    CAS  Google Scholar 

  • Trick, H. N.; Finer, J. J. SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Res. 6:329–337; 1997.

    CAS  Google Scholar 

  • Trieu, A. T.; Burleigh, S. H.; Kardailsky, I. V.; Maldonado-Mendoza, I. E.; Versaw, W. W. K.; Blaylock, L. A.; Shin, H.; Chiou, T. J.; Katagi, H.; Dewbre, G. R.; Weigel, D.; Harrison, M. J. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J. 22:531–541; 2000.

    PubMed  CAS  Google Scholar 

  • Van den Elzen, P. J. M.; Townsend, J.; Lee, K. Y.; Bedbrook, J. R. A chimeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol. Biol. 5:299; 1985.

    Google Scholar 

  • Vaucheret, H.; Béclin, C.; Elmayan, T. Transgene-induced gene silencing in plants. Plant J. 16:651–659; 1998.

    PubMed  CAS  Google Scholar 

  • Vaucheret, H.; Béclin, C.; Fagard, M. Post-transcriptional gene silencing in plants. J. Cell. Sci. 114:3083–3091; 2001.

    PubMed  CAS  Google Scholar 

  • Vergunst, A. C.; Hooykaas, P. J. J. Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of Cre. Plant. Mol. Biol. 38:393–406; 1998.

    PubMed  CAS  Google Scholar 

  • Vergunst, A. C.; Jansen, L. E. T.; Hooykaas, P. J. J. Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res. 26:2729–2734; 1998.

    PubMed  CAS  Google Scholar 

  • Wang, M. B.; Waterhouse, P. M. High efficiency of silencing of a β-glucuronidase gene in rice is correlated with repetitive transgene structure but is independent of DNA methylation. Plant Mol. Biol. 43:67–82; 2000.

    PubMed  CAS  Google Scholar 

  • Wang, Y.; Zhang, W.; Cao, J.; McElory, D.; Wu, R. Promoters from kin1 and cor6.6, two Arabidopsis thaliana low temperature and ABA-inducible genes, direct strong β-glucuronidase expression in guard cells, pollen and young developing seeds. Plant Mol. Biol. 28:619–634; 1995.

    PubMed  CAS  Google Scholar 

  • Wassenegger, M.; Heimes, S.; Riedel, L.; Sänger, H. L. RNA directed de novo methylation of genomic sequences in plants. Cell 76:567–576; 1994.

    PubMed  CAS  Google Scholar 

  • Wilmink, A.; Dons, J. J. M. Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant. Mol. Biol. Rep. 11:165–185; 1993.

    CAS  Google Scholar 

  • Xing, A.; Zhang, Z.; Sato, S.; Staswick, P.; Clemente, T. The use of the two T-DNA binary system to derive marker free transgenic soybeans. In Vitro Cell. Dev. Biol. 36:456–463; 2000.

    CAS  Google Scholar 

  • Xu, X.; Li, B. Fertile transgenic Indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Rep. 13:237–242; 1994.

    CAS  Google Scholar 

  • Ye, F.; Singer, E. R. RIGS (repeat-induced gene silencing) in Arabidopsis is transcriptional and alters chromatin configuration. Proc. Natl Acad. Sci. USA 93:10881–10886; 1996.

    PubMed  CAS  Google Scholar 

  • Ye, G. N.; Stone, D.; Pang, S. Z.; Creely, W.; Gonzalez, K.; Hinchee, M. Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation. Plant J. 19:249–257; 1999.

    PubMed  Google Scholar 

  • Yoder, J. I.; Goldsbrough, A. P. Transformation systems for generating marker-free transgenic plants. Bio/Technology 12:263–267; 1994.

    CAS  Google Scholar 

  • Zaghmout, O. M.-F. Direct electroporation of plasmid DNA into wheat intact cells of embryogenic callus. Cereal Res. Commun. 21:301–308; 1993.

    Google Scholar 

  • Zambryski, P. C. Basic processes underlying Agrobacterium-mediated DNA transfer to plant cells. Annu. Rev. Genet. 22:1–30; 1988.

    PubMed  CAS  Google Scholar 

  • Zambryski, P. C. Chronicles from the Agrobacterium-plant cell DNA transfer story. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:465–490; 1992.

    CAS  Google Scholar 

  • Zambryski, P.; Tempe, J.; Schell, J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell 56:193–201; 1989.

    PubMed  CAS  Google Scholar 

  • Zamore, P. D.; Tuschl, T.; Sharp, P. A.; Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33; 2000.

    PubMed  CAS  Google Scholar 

  • Zhang, W.; Wu, R. Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76:835–840; 1988.

    Google Scholar 

  • Zhong, H.; Sun, B.; Warkentin, D.; Zhang, S.; Wu, R.; Wu, T.; Sticklen, M. B. The competence of maize shoot meristems for integrative transformation and inherited expression of transgenes. Plant Physiol. 110:1097–1107; 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, K.K., Bhatnagar-Mathur, P. & Thorpe, T.A. Genetic transformation technology: Status and problems. In Vitro Cell.Dev.Biol.-Plant 41, 102–112 (2005). https://doi.org/10.1079/IVP2004618

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004618

Key words

Navigation