Skip to main content
Log in

Regeneration from long-term embryogenic callus of the Rosa hybrida cultivar kardinal

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Media components used for three stages of development: (1) callus maintenance, (2) maturation of embryos, and (3) conversion of embryos to plants were shown to affect regeneration of plants for the commercially important red rose cultivar Kardinal. Embryogenic callus was maintained for 5yr on either Schenk and Hildebrandt’s basal salts medium (SH) supplemented with 13.6 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or Murashige and Skoog’s basal salts medium (MS) supplemented with 18.1 μM dicamba and 0.46 μM kinetin. Maturation of embryos was three times higher using callus maintained on the SH medium supplemented with 2,4-D while conversion of cotyledonary-stage embryos to plants was significantly higher (10 times) using callus that had been maintained on MS medium with dicamba and kinetin. Maximum maturation (13.5%), and conversion (15.2%), occurred when callus was cultured on MS maturation medium without hormones. Cotyledonary-stage embryos cultured on MS conversion medium supplemented with abscisic acid (5–20 μM) produced plants that survived at a significantly higher rate (two times) in the greenhouse than when embryos were cultured without abscisic acid. The highest rate of plant regeneration occurred when embryogenic callus of ‘Kardinal’ was maintained on MS medium supplemented with dicamba and kinetin, maturation of embryos occurred on MS maturation medium without hormones, and conversion of cotyledonary-stage embryos occurred on MS conversion medium supplemented with abscisic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Castillon, J.; Kamo, K. Maturation and conversion of somatic embryos of three genetically diverse rose cultivars. HortScience 37:973–977; 2002.

    Google Scholar 

  • Cheng, W. H.; Endo, A.; Zhou, L.; Penney, J.; Chen, H. C.; Arroyo, A.; Leon, P.; Nambara, E.; Asami, T.; Seo, M.; Koshiba, T.; Sheen, J. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Derks, F. H. M.; van Dijk, A. J.; Hanisch ten Cate, C. H.; Florack, D. E. A.; Dubois, L. A. M.; de Vries, D. P. Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity, somatic embryogenesis and Agrobacterium-mediated transformation. Acta Hort. 405:205–209; 1995.

    Google Scholar 

  • De Wit, J. C.; Esendam, H. F.; Honkanen, J. J.; Tuominen, U. Somatic embryogenesis and regeneration of flowering plants in rose. Plant Cell Rep. 9:456–458; 1990.

    Article  Google Scholar 

  • Dunstan, D. I.; Dong, J. Z.; Carrier, D. J.; Abrams, S. R. Review. Events following ABA treatment of spruce somatic embryos. In Vitro Cell. Dev. Biol. Plant 34:159–168; 1998.

    CAS  Google Scholar 

  • Firoozabady, E.; Moy, Y.; Courtney-Gutterson, N.; Robinson, K. Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/Technology 12:609–613; 1994.

    Article  CAS  Google Scholar 

  • Hsia, C.; Korban, S. S. Organogenesis and somatic embryogenesis in callus cultures of Rosa hybrida and Rosa chinensis minima. Plant Cell Tiss. Organ Cult. 44:1–6; 1996.

    Article  CAS  Google Scholar 

  • Kintzios, S.; Manos, C.; Makri, O. Somatic embryogenesis from mature leaves of rose (Rosa sp.). Plant Cell Rep. 18:467–472; 1999.

    Article  CAS  Google Scholar 

  • Kunitake, H.; Imamizo, H.; Mii, M. Somatic embryogenesis and plant regeneration from immature seed-derived calli of rugosa rose (Rosa rugosa Thunb.). Plant Sci. 90:187–194; 1993.

    Article  CAS  Google Scholar 

  • Li, X.; Krasnyanski, S. F.; Korban, S. S. Somatic embryogenesis, secondary somatic embryogenesis, and shoot organogenesis in Rosa. J. Plant Physiol. 159:313–319; 2002a.

    Article  CAS  Google Scholar 

  • Li, X.; Krasnyanski, S. F.; Korban, S. S. Optimization of the uidA gene transfer into somatic embryos of rose via Agrobacterium tumefaciens. Plant Physiol. Biochem. 40:453–459; 2002b.

    Article  CAS  Google Scholar 

  • Marchant, R.; Davey, M. R.; Lucas, J. A.; Power, J. B. Somatic embryogenesis and plant regeneration in Floribunda rose (Rosa hybrida L.) cvs. Trumpeter and Glad Tidings. Plant Sci. 120:95–105; 1996.

    Article  Google Scholar 

  • Merkle, S. A.; Parrott, W. A.; Flinn, B. S. Morphogenic aspects of somatic embryogenesis. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht: Kluwer Academic Publishers; 1995:155–203.

    Google Scholar 

  • Misra, S.; Attree, S. M.; Leal, I.; Fowke, L. C. Effect of abscisic acid, osmoticum, and desiccation on synthesis of storage proteins during the development of white spruce somatic embryos. Ann. Bot. 71:11–22; 1993.

    Article  CAS  Google Scholar 

  • Murali, S.; Sreedhar, D.; Lokeswari, T. S. Regeneration through somatic embryogenesis from petal-derived calli of Rosa hybrida L. cv Arizona (hybrid tea). Euphytica 91:271–275; 1996.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Noriega, C.; Sondahl, M. R. Somatic embryogenesis in hybrid tea roses. Bio/Technology 9:991–993; 1991.

    Article  Google Scholar 

  • Rout, G. R.; Samantaray, S.; Mottley, J.; Das, P. Biotechnology of the rose: a review of recent progress. Sci. Hort. 81:201–228; 1999.

    Article  CAS  Google Scholar 

  • Sarasan, V.; Roberts, A. V.; Rout, G. R. Methyl laurate and 6-benzyladenine promote the germination of somatic embryos of a hybrid rose. Plant Cell Rep. 20:183–186; 2001.

    Article  CAS  Google Scholar 

  • Schenk, R. U.; Hildebrandt, A. C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50:199–204; 1972.

    CAS  Google Scholar 

  • van der Salm, T. P. M.; van der Toorn, C. J. G.; Bouwer, R.; Hanisch ten Cate, C. H.; Dons, H. J. M. Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybrida L. ‘Moneyway’ Plant Cell Rep. 15:522–526; 1996.

    Article  Google Scholar 

  • van der Salm, T. P. M.; van der Toorn, C. J. G.; Bouwer, R.; Hanisch ten Cate, C. H.; Dons, H. J. M. Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Mol. Breed. 3:39–47; 1997.

    Article  Google Scholar 

  • van der Salm, T. P. M.; van der Toorn, C. J. G.; Hanisch ten Cate, C. H.; Dubois, L. A. M.; De Vries, D. P.; Dons, H. J. M. Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell Tiss. Organ Cult. 37:73–77; 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Kamo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamo, K., Jones, B., Bolar, J. et al. Regeneration from long-term embryogenic callus of the Rosa hybrida cultivar kardinal. In Vitro Cell.Dev.Biol.-Plant 41, 32–36 (2005). https://doi.org/10.1079/IVP2004599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004599

Key words

Navigation