Skip to main content
Log in

Summary

Traditional breeding has been widely used in forestry. However, this technique is inefficient because trees have a long and complex life cycle that is not amenable to strict control by man. Fortunately, the development of genetic engineering is offering new ways of breeding and allowing the incorporation of new traits in plant species through the introduction of foreign genes (transgenes). The introduction of selected traits can be used to increase the productivity and commercial value of trees and other plants. For example, some species have been endowed with resistance to herbicide and pathogens such as insects and fungi. Also, it has been possible to introduce genes that modify development and wood quality, and induce sexual sterility. The development of transgenic trees has required the implementation of in vitro regeneration techniques such as organogenesis and somatic embryogenesis. Release of transgenic species into the agricultural market requires a standardized biosafety regulatory frame and effective communication between the scientific community and society to dissipate the suspicions associated with transgenic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arisi, A. C. M.; Cornic, G.; Jouanin, L.; Foyer, C. H. Over-expression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures following exposure to the prooxidant herbicide methyl viologen. Plant Physiol. 117:565–574; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Arokiaraj, P.; Yeang, H. Y.; Cheong, K. F.; Hamzah, S.; Jones, H.; Coomber, S.; Charlwood, B. V. CaMV 35S promoter directs beta-glucuronidase expression in the lacticiferous system of transgenic Hevea brasiliensis (rubber tree). Plant Cell Rep. 17:621–625; 1998.

    Article  CAS  Google Scholar 

  • Bell, R. L.; Scorza, R.; Srinivasan, C.; Webb, K. Transformation of Beurre Bosc pear with the rolC gene. J. Am. Soc. Hort. Sci. 124:570–574; 1999.

    CAS  Google Scholar 

  • Bishop-Hurley, S. L.; Zabkiewicz, R. J.; Grace, L.; Gardner, R. C.; Wagner, A.; Walter, C. Conifer genetic engineering: transgenic Pinus radiata (D. Don.) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep. 20:235–243; 2001.

    Article  CAS  Google Scholar 

  • Bolar, J. P.; Norelli, J. L.; Wong, K. W.; Hayes, C. K.; Harman, G. E.; Aldwinckle, H. S. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77; 2000.

    CAS  PubMed  Google Scholar 

  • Campbell, M. A.; Neale, D. B.; Kinlaw, C. S. Expression of luciferase and β-glucuronidase in Pinus radiata suspension cells using electroporation and particle bombardment. Can. J. For. Res. 22:2014–2018; 1992.

    CAS  Google Scholar 

  • Carstens, M.; Vivier, M. A.; Pretorius, I. S. The Saccharomyces cerevisiae chitinase, encoded by the CTS1-2 gene, confers antifungal activity against Botrytis cinerea to transgenic tobacco. Transgenic Res. 12:497–508; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Cary, J. W.; Rajasekaran, K.; Jaynes, J. M.; Cleveland, T. E. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci. 154:171–181; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Cerda, F.; Aquea, F.; Gebauer, M.; Medina, C.; Arce-Johnson, P. Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell Tiss. Organ Cult. 70:251–257; 2002.

    Article  CAS  Google Scholar 

  • Charest, P. J.; Caiero, N.; Lachance, D. Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression using the β-glucuronidase reporter gene. Plant Cell Rep. 12:189–193; 1993.

    Article  CAS  Google Scholar 

  • Charest, P. J.; Devantier, Y.; Lachance, D. Stable genetic transformation of Picea mariana (Black spruce) via particle bombardment. In Vitro Cell. Dev. Biol. Plant 32:91–99; 1996.

    Article  Google Scholar 

  • Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 26:2022–2025; 2004.

    Article  CAS  Google Scholar 

  • Cruz-Hernández, A.; Witjaksono, R. E.; Litz, A.; Gomez-Lim, M. A. Agrobacterium tumefaciens mediated transformation of embyrogenic avocado cultures and regeneration of somatic embryos. Plant Cell Rep. 17:497–503; 1998.

    Article  Google Scholar 

  • Dandekar, A. M.; Gupta, P. K.; Durzan, D. J.; Knauf, V. Genetic transformation and foreign gene expression in micropropagated Douglas fir (Pseudotsuga menziesii). Bio/Technology 5:587–590; 1987.

    Article  CAS  Google Scholar 

  • Decroocq, V.; Zhu, X.; Kauffman, M.; Kyozuka, J.; Peacock, W. J.; Dennis, E. S. A TM3-like MAD-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228:155–160; 1997.

    Article  Google Scholar 

  • Delledonne, M.; Allegro, G.; Belenghi, B.; Balestrazzi, B.; Picco, F.; Levine, A.; Zelesco, S.; Calligari, P.; Confalonieri, M. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor gene and analysis of insect pest resistance. Mol. Breed. 7:35–42; 2001.

    Article  CAS  Google Scholar 

  • Delmer, D.; Amer, Y. Cellulose biosynthesis. Plant Cell 7:987–1000; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. Natural products and plant disease resistance. Nature 411:843–847; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Donahue, R. A.; Davis, T. D.; Michler, C. H.; Riemenchneider, D. E.; Carter, D. R.; Marquardt, P. E.; Sankhla, D.; Haissig, B. E.; Isebrands, J. G. Growth photosynthesis, and herbicide tolerance of genetically modified hybrid poplar. Can. J. For. Res. 21:1155–1170; 1994.

    Google Scholar 

  • Duchesne, L. C.; Charest, P. J. Transient expression of the β-glucuronidase gene in embryogenic callus of Picea mariana following microprojection. Plant Cell Rep. 10:191–194; 1991.

    Article  CAS  Google Scholar 

  • Ellis, D. D.; McCabe, D. E.; McInnis, S.; Ramachandran, R.; Russell, D. R.; Wallace, K. M.; Martinell, B. J.; Roberts, D. R.; Raffa, K. F.; McCown, B. H. Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11:84–89; 1993.

    Article  CAS  Google Scholar 

  • Eriksson, M. E.; Israelsson, M.; Olsson, O.; Moritz, T. Increased gibberellin biosynthesis in transgenic trees promoters growth, biomass production and xylem fiber length. Nat. Biotechnol. 18:784–788; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Everett, M.; Hansen, M.; Lewis, K. J., eds. Compendium of conifer diseases. APS Press: St. Paul; 1997; 128 pp.

    Google Scholar 

  • Fillati, J. J.; Sellmer, J.; McCown, B.; Haissig, B.; Comai, L. Agrobacterium-mediated transformation and regeneration of Populus. Mol. Gen. Genet. 206:192–199; 1987.

    Article  Google Scholar 

  • Foyer, C. H.; Souriau, N.; Perret, S.; Lelandais, M.; Kunert, K. J.; Pruvost, C.; Jouanin, L. Over-expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109:1047–1057; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Franche, C.; Diouf, D.; Le, Q. V.; N'diaye, A.; Gherbi, H.; Bogusz, D.; Gobé, C.; Douboux, E. Genetic transformation of the actinorhizal tree Allocasuarina verticillata by Agrobacterium tumefaciens. Plant J. 11:897–904; 1997.

    Article  CAS  Google Scholar 

  • Franke, R.; McMichael, C. M.; Shirley, A. M.; Meyer, K.; Cusumano, J. C.; Chapple, C. Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J. 22:223–234; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Frohlich, M. W.; Parker, D. S. The mostly male theory of flower evolutionary origins: from genes to fossils. Syst. Bot. 25:155–170; 2000.

    Article  Google Scholar 

  • Gartland, J. S.; Mchugh, A. T.; Brasier, C. M.; Ivrine, R. J.; Fenning, T. M.; Gartland, K. M. A. Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following tranformation with an Agrobacterium tumefaciens binary vector. Tree Physiol. 20:901–907; 2000.

    PubMed  CAS  Google Scholar 

  • Ghorbel, R.; Dominguez, A.; Navarro, L.; Penna, L. High efficiency genetic transformation of sour orange (Citrus aurantium) and production of transgenic trees containing the coat protein gene of citurs tristeza virus. Tree Physiol. 20:1183–1189; 2000.

    PubMed  Google Scholar 

  • Gullner, G.; Kömives, T.; Rennenberg, H. Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloroacetanilide herbicides. J. Exp. Bot. 52:971–979; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Pesce, P.; Taylor, K.; Muleo, R.; Rugini, E. Somatic embryogenesis and shoot regeneration from transgenic rootstock Colt (Prunus avium × P. pseudocerasus) mediated by pRi 1855 T-DNA of Agrobacterium rhizogenes Plant Cell Rep. 17:574–580; 1998.

    Article  CAS  Google Scholar 

  • Haughn, G. W.; Schultz, E. W.; Martinez-Zapater, J. M. The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis and mutants. Can. J. Bot. 73:959–981;1995.

    CAS  Google Scholar 

  • Herschbach, C.; Kopriva, S. Transgenic trees as tools in tree and plant physiology. Trees 16:250–261; 2002.

    Article  CAS  Google Scholar 

  • Hu, W. J.; Harding, S. A.; Lung, J.; Popko, J. L.; Ralph, J.; Stokke, D. D.; Tsai, C. J.; Chiang, V. L. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat. Biotechnol. 17:808–812; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Humara, J. M.; López, M.; Ordás, R. J. Agrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Rep. 19:51–58; 1999.

    Article  CAS  Google Scholar 

  • Igasaki, T.; Mohri, T.; Ichikawa, H.; Shinohara, K. Agrobacterium-mediated transformation of Robinia pseudoacacia. Plant Cell Rep. 19:448–453; 2000.

    Article  CAS  Google Scholar 

  • James, C.; Krattiger, A. F. Global review of the field-testing and commercialization of transgenic plants: 1986–1995, the first decade of crop biotechnology. ISAAA Brief no. 1 Ithaca, NY; International Services for the Acquisition of Agri-Biotech Applications. 1996.

    Google Scholar 

  • Jayashree, R.; Rekha, K.; Venkatachalam, P.; Uratsu, S. L.; Dandekar, A. M.; Kumari Jayasree, P.; Kala, R. G.; Priya, P.; Sushma Kumari, S.; Sobha, S.; Ashokan, M. P.; Sethuraj, M. R.; Thulaseedharan, A. Genetic transformation and regeneration of rubber tree (Hevea brasiliensis Muell. Arg.) transgenic plants with a constitutive version of an anti-oxidative stress superoxide dismutase gene. Plant Cell Rep. 22:201–209; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Jouanin, L.; Goujon, T.; Nadaï, V.; Martin, M. T.; Conil, M.; Lapierre, C. Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol. 123:1363–1374; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kaneyoshi, J.; Kobayashi, S. Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. J. Jpn Soc. Hort. Sci. 68:734–738; 1999.

    Article  CAS  Google Scholar 

  • Kende, H.; Zeevaart, J. A. D. The five ‘classical’ plant hormones. Plant Cell 9:1197–1210; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Kleiner, K. W.; Ellis, D. D.; McCown, B. H.; Raffa, K. F. Leaf ontogeny influences leaf phenolics and the efficacy of genetically expressed Bacillus thuringiensis crylA(a) d-endotoxin in hybrid poplar against gypsy moth. J. Chem. Ecol. 29:2585–2602; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska, K.; Devantier, Y.; Lachance, D.; Lelu, M. A.; Charest, P. J. Larix laricina (tamarack)—somatic embryogenesis and genetic transformation. Can. J. For. Res. 27:538–550; 1997.

    Article  Google Scholar 

  • Klimaszewska, K.; Lachance, D.; Pelletier, G.; Lelu, M. A.; Séguin, A. Regeneration of transgenic Picea glauca P. mariana P. abies after co-cultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. Plant 37:748–755; 2001.

    Article  CAS  Google Scholar 

  • Levée, V.; Garin, E.; Klimaszewska, K.; Séguin, A. Stable genetic transformation of white pine (Pinus strobus L.) after co-cultivation of embryogenic tissues with Agrobacterium tumefaciens Mol. Breed. 5:429–440; 1999.

    Article  Google Scholar 

  • Liang, H.; Maynard, C. A.; Allen, R. D.; Powell, W. A. Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol. Biol. 45:619–629; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Lindroth, A.; Grönroos, R.; Claphamet, D. A. L. Ubiquitous and tissue specific gus expression in transgenic roots conferred by six different promotors in one coniferous (Pinus contorta) and three angiosperm species (Lycopersicon esculentum, Nicotiana tabacum and Arabidopsis thaliana). Plant Cell Rep. 18:820–828; 1999.

    Article  CAS  Google Scholar 

  • Loopstra, C. A.; Weissinger, A. K.; Sederoff, R. R. Transient gene expression in differentiating pine wood using microprojectile bombardment. Can. J. For. Res. 22:993–996; 1992.

    CAS  Google Scholar 

  • Maloney, A. P.; Vanetten, H. D. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol. Gen. Genet. 243:506–514; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Martinussen, I.; Twell, D.; Junttila, O. Optimization of transient gene expression in Norway spruce (Picea abies (L.) Karst.) pollen by using the particle accelerator technique. Physiol. Plant. 92:412–416; 1994.

    Article  CAS  Google Scholar 

  • McCown, B. H.; McCabe, D. E.; Russell, D. R.; Robinson, D. J.; Barton, K. A.; Raffa, K. I. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep. 9:590–594; 1991.

    Article  CAS  Google Scholar 

  • McGranahan, C. H.; Leslie, C. A.; Uratsu, S. L.; Martin, L. A.; Dandekar, A. M. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6:800–804; 1998.

    Article  Google Scholar 

  • McLean, M. A.; Charest, P. J. The regulation of transgenic trees in North America. Silvae Genet. 49:233–239; 2000.

    Google Scholar 

  • Medina, C.; Simpson, J.; Herrera-Estrella, L. Methods for plant genetic transformation. In: Ramirez, O. ed. Advances in bioprocess engineering II. Dordrecht: Kluwer Academic Publishers; 1998:67–68.

    Google Scholar 

  • Merkle, S.; Dean, J. Forest tree biotechnology. Curr. Opin. Biotechnol. 11:298–302; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, P.; Seadler, H. Homology-dependent gene silencing in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:23–48; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Mohrí, T.; Igasaki, T.; Futamura, N.; Shinohara, K. Morphological changes in transgenic poplar induced by expression of the rice homeobox gene OSH1. Plant Cell Rep. 18:816–819; 1999.

    Article  Google Scholar 

  • Mouradov, A.; Hamdorf, B.; Teasdale, R. D.; Kim, J. T.; Winter, K. U.; Theissen, G. A. DEF/GLO-like MADS-box gene from a gymnosperm: Pinus radiata contains an ortholog of angiosperm B class floral homeotic genes. Dev. Genet. 25:245–252; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Nicolescu, C.; Sandre, C.; Jouanin, L.; Chriqui, D. Genetic engineering of phenolic metabolism in poplar in relation with resistance against pathogens. Acta Bot. Gallica 43:539–546; 1996.

    Google Scholar 

  • Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O. Expression of the Agrobacterium rhizogenes rolC gene in a deciduous forest tree alters growth and development and leads to stem fasciation. Plant Physiol. 112:493–502; 1996.

    PubMed  CAS  Google Scholar 

  • Noctor, G.; Foyer, C. H. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:249–279; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Olsen, J. E.; Junttila, O.; Nilsen, J.; Eriksson, M. E.; Martinussen, I.; Olsson, O.; Sandberg, G.; Moritz, T. Ectopic expression of oat phytochrome A in hybrid aspen changes critical day length for growth and prevents cold acclimatization. Plant J. 12:1339–1350; 1997.

    Article  CAS  Google Scholar 

  • Peña, L.; Martín-Trillo, M.; Juárez, J.; Pina, J. A.; Navarro, L.; Martínez-Zapater, J. M. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat. Biotechnol. 19:263–267; 2001.

    Article  PubMed  Google Scholar 

  • Peña, L.; Séguin, A. Recent advances in the genetic transformation of trees. Trends Biotechnol. 19:500–506; 2001.

    Article  PubMed  Google Scholar 

  • Polle, A.; Rennenberg, H. Significance of antioxidants in plant adaptation to environmental stress. In: Fowden, L.; Mausfield, T., eds. Plant adaptation to environmental stress. London: Chapman & Hall; 1993:263–273.

    Google Scholar 

  • Rennenberg, H.; Will, B. Phytochelatin production and cadmium accumulation in transgenic poplar (Populus tremula × P. alba). In: Brunold, C.; Rennenberg, H.; De Kok, L. J.; Stulen, I.; Davidian, J. C., eds. Sulfur nutrition and sulfur assimilation in higher plants. Berne: Haupt; 2000:393–398.

    Google Scholar 

  • Rey, M.; González, M. V.; Ordás, R. J.; Tavazza, R.; Ancoraet, R. Factors affecting transient gene expression in cultured radiata pine cotyledons following particle bombardment. Physiol. Plant. 96:630–636; 1996.

    Article  CAS  Google Scholar 

  • Robertson, D.; Weissinger, A. K.; Glover, S.; Ackley, R.; Sederoff, R. R. Transient and stable transformation following micro-projectile bombardment in Norway Spruce. Plant Mol. Biol. 19:925–935; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Rottmann, W. H.; Meilan, R.; Sheppard, L. A.; Brunner, A. M.; Skinner, J. S.; Ma, C.; Cheng, S.; Jouanin, L.; Pilate, G.; Strauss, S. H. Diverse effects of over-expression of LEAFY and PTLF, a poplar (Populus) homologue of LEAFY/FLORICAULA in transgenic poplar and arabidopsis. Plant J. 22:235–245; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rugh, C. L.; Senecoff, J. F.; Meagher, R. B.; Merkle, S. A. Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16:925–928; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Rutledge, R.; Regan, S.; Nicolas, O.; Fobert, P.; Cote, C.; Bosnich, W.; Kauffeldt, C.; Sunohara, G.; Seguin, A.; Stewart, D. Characterization on an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J. 15:625–634; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Schuler, T. H.; Poppy, C. M.; Kerry, B. N.; Denholm, I. Insect-resistant transgenic plants. TIBTECH 16:168–175; 1998.

    CAS  Google Scholar 

  • Seppanen, S. K.; Syrjala, L.; Von Weissenberg, K.; Teeri, T. H.; Paajanen, L.; Pappinen, A. Antifungal activity of stilbenes in in vitro bioassays and in transgenic Populus expressing a gene encoding pinosylvin synthase. Plant Cell Rep. 22:584–593; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Shin, D.J.; Podila, G. K.; Huang, Y.; Karnosky, D. Transgenic larch expressing genes for herbicide and insect resistance. Can. J. For. Res. 24:2059–2067; 1994.

    Google Scholar 

  • Singh, Z.; Sansavini, S. Genetic transformation and fruit crop improvement. Plant Breed. Rev. 16:87–134; 1998.

    Google Scholar 

  • Stange, C.; Prehn, D.; Gebauer, M.; Arce-Johnson, P. Optimization of in vitro culture conditions for Pinus radiata embryos and histological characterization of regenerated shoots. Biol. Res. 32:19–28; 1999.

    Google Scholar 

  • Stomp, A. M.; Weisslnger, A.; Sederoff, R. Transient expression from microprojectile mediated DNA transfer in Pinus taeda. Plant Cell Rep. 10:187–190; 1991.

    Article  Google Scholar 

  • Strauss, S. H.; Knowe, S. A.; Jenkins, J. Benefits and risks of transgenic Roundup Ready cottonwoods. J. For. 95:12–19; 1997.

    Google Scholar 

  • Strauss, S. H.; Rottmann, W. H.; Brunner, A. M.; Sheppard, L. A. Genetic engineering of reproductive sterility in forest trees. Mol. Breed. 1:5–26; 1995.

    Article  CAS  Google Scholar 

  • Sundstrom, J.; Carlsbecker, A.; Svensson, M. E.; Svenson, M.; Johanson, U.; Theissen, G.; Engstrom, P. MADS-Box Genes active in developing pollen cones of Norway spruce (Picea abies) are homologous to the B-Class floral homeotic genes in Angiosperms. Dev. Genet. 25:253–266; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Szankowski, I.; Briviba, K.; Fleschhut, J.; Schonherr, J.; Jacobsen, H. J.; Kiesecker, H. Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa) Plant Cell Rep. 22:141–149; 2003.

    Article  PubMed  CAS  Google Scholar 

  • TGERC. Flowering control. Tree Genetic Engineering Research Cooperative Annual Report. Oregon State University, College of Forestry; 1999:28.

  • Tian, L.; Levee, V.; Mentag, R.; Charest, P. J.; Segiun, A. Green fluorescent protein as a tool for monitoring transgene expression in forest tree species. Tree Physiol. 19:541–546; 1999.

    PubMed  CAS  Google Scholar 

  • Tian, L.; Séguin, A.; Charest, P. J. Expression of the green fluorescent protein in conifer tissues. Plant Cell Rep. 16:267–271; 1997.

    CAS  Google Scholar 

  • Trick, H. N.; Finer, J. J. Induction of somatic embryogenesis and genetic transformation of Ohio buckeye (Aesculus glabra Willd.). In Vitro Cell. Dev. Biol. Plant 35:57–60; 1999.

    CAS  Google Scholar 

  • Tuominen, H.; Sitbon, F.; Jacobsson, C.; Sandberg, G.; Olsson, O.; Sundberg, B. Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol. 109:1179–1189; 1995.

    PubMed  CAS  Google Scholar 

  • Tzifira, T.; Yarnitzky, O.; Vainstein, A.; Altman, A. Agrobacterium rhizogenes-mediated DNA transfer in Pinus halapensis Mill. Plant Cell Rep. 16:26–31; 1996.

    Google Scholar 

  • Tzifira, T.; Zuker, A.; Altman, A. Forest tree biotechnology: genetic transformation and its application to future forest. Trends Biotechnol. 16:439–446; 1998.

    Article  Google Scholar 

  • Wagner, A.; Moody, J.; Grace, L. J.; Walter, C. Stable transformation of Pinus radiata based on selection with hygromycin. NZ J. For. Sci. 27:280–288; 1997.

    CAS  Google Scholar 

  • Walter, C.; Carson, S. D.; Menzies, M. I.; Richardson, T.; Carson, M. Review: Application of biotechnology to forestry—molecular biology of conifers. World J. Microbiol. Biotechnol. 14:321–330; 1998a.

    Article  Google Scholar 

  • Walter, C.; Charity, J.; Grace, L.; Höfig, K.; Möller, R.; Wagner, A. Gene technologies in Pinus radiata and Picea abies: tools for conifer biotechnology in 21st century. Plant Cell Tiss. Organ Cult. 70:3–12; 2002.

    Article  CAS  Google Scholar 

  • Walter, C.; Grace, L. J.; Donaldson, S. S.; Moody, J.; Gemmell, J. E.; Van Der Maos, S.; Kvaalen, H.; Lonneborg, A. An efficient biolistic transformation protocol for Picea abies (L.) Karst embryogenic tissue and regeneration of transgenic plants. Can. J. For. Res. 29:1539–1546; 1999.

    Article  Google Scholar 

  • Walter, C.; Grace, L.; Wagner, A.; White, D.; Walden, A.; Donaldson, S.; Hinton, H.; Gardner, R.; Smith, D. Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep. 17:460–468; 1998b.

    Article  CAS  Google Scholar 

  • Walter, C.; Smith, D. R.; Connett, M. B.; Grace, L.; White, D. W. R. A bioballistic approach for the transfer and expression of a gusA reporter gene in embryogenic culture of Pinus radiata. Plant Cell Rep. 14:69–74; 1994.

    Article  CAS  Google Scholar 

  • Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D.; Nilsson, O. A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Wenk, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R. R. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39:407–416; 1999.

    Article  Google Scholar 

  • Whetten, A.; Sederoff, R. Lignin biosynthesis. Plant Cell 7:1001–1013; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox, P. H.; Amerson, H. V.; Kuhlman, G.; Liu, G. H.; O'Malley, D. M.; Sederoff, R. R. Detection of a major gene for resistance to fusiform rust disease in lobolly pine by genome mapping. Proc. Natl Acad. Sci. USA 93:3859–3864; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Will, B.; Eiblmeier, M.; Langebartels, C.; Rennenberg, H. Consequences of chronic ozone exposure in transgenic poplars over-expressing enzymes of the glutathione metabolism. In: Cram, W. J.; De Kok, L. J.; Stulen, I.; Brunold, C.; Rennenberg, H., eds. Sulphur metabolism in higher plants—molecular, ecophysiological and nutritional aspects. Leiden: Backhuys Publishers; 1997:257–259.

    Google Scholar 

  • Yu, H.; Ito, T.; Zhao, Y.; Peng, J.; Kumar, P.; Meyerowitz, E. Floral homeotic genes are targets of gibberellin signaling in flower development. Proc. Natl Acad. Sci. USA 101:7827–7832; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, L. H.; Holefors, A.; Ahlman, A.; Xue, Z. T.; Welander, M. Transformation of the apple rootstock M.9/29 with the rolB gene and its influence on rooting and growth. Plant Sci. 160:433–439; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricio Arce-Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poupin, M.J., Arce-Johnson, P. Transgenic trees for a new era. In Vitro Cell.Dev.Biol.-Plant 41, 91–101 (2005). https://doi.org/10.1079/IVP2004587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004587

Key words

Navigation