Skip to main content
Log in

Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The regal pelargonium, ev. Dubonnet, was transformed using the disarmed Agrobacterium tumefaciens strains LBA4404 or EHA105 containing the binary vector pLN70. This plasmid carries on its T-DNA the rolC gene from Agrobacterium rhizogenes under control of the CaMV 35S promoter and the npt II selectable marker gene under a NOS promoter. Six independent transformants were produced and grouped according to their phenotypic characteristics. Two transformants showed the same phenotype as the untransformed control plants. Three transformants exhibited a dwarf phenotype and one displayed a super-dwarf phenotype. Southern hybridization analyses of the T-DNA left border region using a npt II probe showed that the six transformants all arose from independent transformation events. Northern hybridization analyses showed that the rolC gene was expressed only in the four transformants that exhibited a dwarf phenotype. Our data show that the phenotypic effects of rolC expression in regal pelargoniums include reductions in plant height, leaf area, petal area, and corolla length. Earlier flowering of the rolC transgenics by up to 22d was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boase, M. R.; Bradley, J. M.; Borst, N. K. An improved method for transformation of regal pelargonium (Pelargonium X domesticum ‘Dubonnet’) by Agrobacterium tumefaciens. Plant Sci. 139: 59–69; 1998.

    Article  CAS  Google Scholar 

  • Boase, M. R.; Deroles, S. C.; Winefield, C. S.; Butcher, S. M.; Borst, N. K.; Butter, R. C. Genetic transformation of regal pelargonium (Pelargonium X domesticum ‘Dubonnet’) by Agrobacterium tumefacients. Plant Sci. 121: 47–61; 1996.

    Article  CAS  Google Scholar 

  • Chatfield, C.; Collins, A. J. Introduction to multivariate analysis. Cambridge: Cambridge University Press; 1980.

    Google Scholar 

  • Christey, M. C. Use of TI-mediated transformation for production of transgenic plants. In Vitro Cell. Dev. Biol. Plant 37: 687–700; 2001.

    Article  CAS  Google Scholar 

  • Church, G. M.; Gilbert, W. Genomic sequencing. Proc. Natl Acad. Sci. USA 81: 1991–1995; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. J.; Doyle, L. L. Isolation of plant DNA from fresh tissue. Focus 12: 13–15; 1990.

    Google Scholar 

  • Estruch, J. J.; Chriqui, D.; Grossmann, K.; Schell, J.; Spena, A. The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J. 10: 2889–2895; 1991a.

    PubMed  CAS  Google Scholar 

  • Estruch, J. J.; Parets-Soler, A.; Schmulling, T.; Spena, A. Cytosolic localization in transgenic plants of the rolC peptide from Agrobacterium rhizogenes. Plant Mol. Biol. 17: 547–550; 1991b.

    Article  PubMed  CAS  Google Scholar 

  • Faiss, M.; Strnad, M.; Redig, P.; Dolezal, K.; Hanus, J.; Van Onckelen, H.; Schmulling, T. Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of ctyokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J. 10: 33–46; 1996.

    Article  CAS  Google Scholar 

  • Gamborg, O. L.; Murashige, T.; Thorpe, T. A.; Vasil, I. K. Plant tissue culture media. In Vitro 12: 473–478; 1976.

    PubMed  CAS  Google Scholar 

  • Gleave, A. P. A versatile binary vector system with a T-DNA organisational structure conductive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20: 1203–1207; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Hoekema, A.; Hirsch, P. R.; Hooykaas, P. J. J.; Schilperoort, R. A. A binary vector strategy based on the separation of the vir and T-DNA regions of the Agrobacterium tumefaciens Ti-plasmid. Nature 303: 179–181; 1983.

    Article  CAS  Google Scholar 

  • Hood, E. E.; Gelvin, S. B.; Mclchers, L. S.; Hockema, A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2: 208–218; 1993.

    Article  CAS  Google Scholar 

  • Hood, E. E.; Helmer, G. L.; Fraley, R. T.; Chilton, M. D. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168: 1291–1301; 1986.

    PubMed  CAS  Google Scholar 

  • King, G. A.; Davies, K. M. Identification, cDNA cloning and analysis of mRNAs having altered expression in tips of harvested asparagus spears. Plant Physiol. 100: 1161–1169; 1992.

    Article  Google Scholar 

  • Linsmaier, E. M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 18: 100–127; 1965.

    Article  CAS  Google Scholar 

  • Llewellyn, J.; Hudson, B.; Morrison, G. C. Growing geraniums and pelargoniums. Nenthurst, NSW: Kangaroo Press; 1981.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol. Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Ooms, G.; Hooykaas, P. J. J.; van Veen, R. J. M.; van Beelen, P.; Regensburg-Tuink, T. J. G.; Schilperoort, R. A. Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7: 15–29; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, H. D.; Thompson, R. Recovery of inter-block information when block sizes are unequal. Biometrika 58: 545–554; 1971.

    Article  Google Scholar 

  • Schultz, D. J.; Craig, R.; Cox-Foster, D. L.; Mumma, R. O.; Medford, J. I. RNA isolation from recalcitrant plant tissue. Plant Mol. Biol. Rep. 12: 310–316; 1994.

    CAS  Google Scholar 

  • Winefield, C.; Lewis, D.; Arathoon, S.; Deroles, D. Alteration of petunia plant form through the introduction of the rolC gene from Agrobacterium rhizogenes. Mol. Breed. 5: 543–551; 1999.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Boase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boase, M.R., Winefield, C.S., Lill, T.A. et al. Transgenic regal pelargoniums that express the rolC gene from Agrobacterium rhizogenes exhibit a dwarf floral and vegetative phenotype. In Vitro Cell.Dev.Biol.-Plant 40, 46–50 (2004). https://doi.org/10.1079/IVP2003476

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2003476

Key words

Navigation