Skip to main content
Log in

Recovery and characterization of transgenic plants from two spring wheat cultivars with low embryogenesis efficiencies by the bombardment of isolated scutella

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Two commercial wheat cultivars with low embryogenesis efficiencies, AC Karma and Hy417, were transformed by the bombardment of isolated scutella with two gene constructs. Three AC Karma plants (433, 436, and 437) carrying plasmid pRC62 containing a gus:npt fusion gene, and one Hy417 plant (438) carrying plasmid pBARGUS containing a bar gene and a gusA gene were recovered and characterized. Presence of transgenes in T0 and T1 plants was confirmed by both PCR and Southern hybridization. Copy number of transgenes varied from one to six in these four plants. The inheritance of transgenes in the progeny was characterized. The gusA gene and its activity in AC Karma plant 436 and bar gene and its activity in Hy417 plant 438 segregated in the selfed T1 progeny in a Mendelian 3:1 ratio, but gusA gene and its activity in AC Karma plants 433 and 437 segregated in selfed T1 progeny in a non-Mendelian 1:1 ratio. The gusA activity in all three AC Karma plants was stably transmitted to selfed T2 or T3 progenies. The levels of gusA and nptII activities in nine T1 plants from AC Karma plant 437 were also determined. A GusA fluorometric assay indicated that gusA activity in the nine T1 plants increased by 2.5–7.2-fold compared with the nontransformed control, while and NptII ELISA assay detected nptII activity only in two of the nine T1 plants, suggesting the nptII gene was silenced in the other seven T1 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altpeter, F.; Vasil, V.; Srivastava, V.; Stöger, E.; Vasil, I. K. Accelerated production of transgenic wheat (Triticum aestivum L.) plants. Plant Cell Rep. 16:12–17; 1996.

    CAS  Google Scholar 

  • Barro, F.; Rooke, L.; Békés, F.; Gras, P.; Tatham, A.S.; Fido, R.; Lazzeri, P. A.; Shewry, P. R.; Barceló, P. Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature Biotechnol. 15:1295–1299; 1997.

    Article  CAS  Google Scholar 

  • Becker, D.; Brettschneider, R.; Lörz, H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5:299–307; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Cannell, M. E.; Doherty, A.; Lazzeri, P. A.; Barceló, P. A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability. Theor. Appl. Genet. 99:772–784; 1999.

    Article  CAS  Google Scholar 

  • Cheng, M.; Fry, J. E.; Pang, S.; Zhou, H.; Hironaka, C. M.; Duncan, D. R.; Conner, T. W.; Wan, Y. Genetic transformation of wheat mediated by Agrobacterium tumefuciens. Plant Physiol. 115:971–980; 1997.

    PubMed  CAS  Google Scholar 

  • Chibbar, R. N.; Kartha, K. K.; Leung, N.; Queshi, J.; Caswell, K. Transient expression of marker genes in immature zygotic embryos of spring wheat (Triticum aestivum) through microprojectile bombardment. Geonome 34:453–460; 1991.

    CAS  Google Scholar 

  • Clausen, M.; Krauter, R.; Schachermayr, G.; Potrykus, I.; Sautter, C. Antifungal activity of a virally encoded gene in transgenic wheat. Nature Biotechnol. 18:446–449; 2000.

    Article  CAS  Google Scholar 

  • Datla, S. K.; Hammerlindl, J.; Pelcher, L. E.; Crosby, W. L.; Selvaraj, G. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101:239–246; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Demeke, K.; Hucl, P.; Båga, M.; Caswell, K.; Leung, N.; Chibbar, R. V. Transgene inheritance and silencing in hexaploid spring wheat. Theor. Appl. Genet. 99:947–953; 1999.

    Article  CAS  Google Scholar 

  • Fennell, S.; Bohorova, N.; van Ginkel, M.; Crossa, J.; Hoisington, D. Plant regeneration from immature embryos of 48 elite CIMMYT bread wheat. Theor. Appl. Genet. 92:163–169; 1996.

    Article  Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C.; Williams, R.; Thomas, J.; Klein, T. M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Iser, M.; Fettig, S.; Scheyhing, F.; Viertel, K.; Hess, D. Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. J. Plant Physiol. 154:509–514; 1999.

    CAS  Google Scholar 

  • Kohli, A.; Leech, M.; Vain, P.; Laurie, D. A.; Christou, P. Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot spots. Proc. Natl Acad. Sci. USA 95:7203–7208; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Koprek, T.; Rangel, S.; McElroy, D.; Louwerse, J. D.; Williams-Carrier, R. E.; Lemaux, P. G. Transposon-mediated single-copy gene delivery leads to increased transgene expression and stability in barley. Plant Physiol. 125:1354–1362; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Li, B. C.; Caswell, K.; Leung, N.; Chibbar, R. N. Wheat (Triticum aestivum L.) somatic emgryogenesis from isolated scutellum: days post anthesis, days of spike storage, and sucrose concentration affect efficiency. In Vitro Cell. Dev. Biol. Plant. 39:20–23; 2003.

    Article  Google Scholar 

  • Lindsey, K.; Gallois, P. Transformation of sugar beet (Beta vulgaris) by Agrobacterium tumefaciens. J. Exp. Bot. 41:529–536; 1990.

    Article  CAS  Google Scholar 

  • McElroy, D.; Zhang, W.; Cao, J.; Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nehra, S. N.; Chibbar, R. N.; Leung, N.; Caswell, K.; Mallard, C.; Steinhauer, L.; Bäga, M.; Kartha, K. K. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5:285–297; 1994.

    Article  CAS  Google Scholar 

  • Pastori, G. M.; Wilkinson, M. D.; Steele, S. H.; Sparks, C. A.; Jones, H. D.; Parry, M. A. J. Age-dependent transformation frequency in elite wheat varieties. J. Exp. Bot. 52:857–863; 2001.

    PubMed  CAS  Google Scholar 

  • Rasco-Gaunt, S.; Riley, A.; Cannell, M.; Barceló, P.; Lazzeri, P. A. Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment. J. Exp. Bot. 52:865–874; 2001.

    PubMed  CAS  Google Scholar 

  • Somers, D. A.; Torber, K. A.; Pawlowski, W. P.; Rines, H. W. Genetic engineering of oat. In: Henry, R. J.; Ronald, J. A., eds. Improvement of cereal quality by genetic engineering. New York: Plenum Press; 1994:37–46.

    Google Scholar 

  • Spencer, T. M.; O'Brien, J. V.; Start, W. G.; Adams, T. R. Segregation of transgene in maize. Plant Mol. Biol. 18:201–210; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, V.; Anderson, O. D.; Ow, D. W. Single-copy transgenic wheat generated through the resolution of complex integration pattern. Proc. Natl Acad. Sci. USA 96:11117–11121; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Stacey, J.; Isaac, P. G. Isolation of DNA from plants. In: Isaac, P. G., ed. Methods in molecular biology, vol. 28: protocol for nucleic acid analysis by non-radioactive probes, Totowa, NJ: Human Press; 1994:9–15.

    Google Scholar 

  • Stam, M.; Mol, J. N. M.; Kooter, J. M. The silence of genes in transgenic plants. Ann. Bot. 79:3–12; 1997.

    Article  CAS  Google Scholar 

  • Takumi, S.; Shimada, T. Variation in transformation frequencies among six common wheat cultivars through particle bomdardment of scutellar tissues. Genes Genet. Syst. 72:63–69; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Vasil, V.; Castillo, A. M.; Fromm, M. F.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.

    Article  CAS  Google Scholar 

  • Vasil, V.; Srivastava, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11:1553–1558; 1993.

    Article  Google Scholar 

  • Wan, Y.; Lemaux, P. G. Generation of large number of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Weeks, J. T.; Anderson, O. D.; Blechl, A. E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102:1077–1084; 1993.

    PubMed  CAS  Google Scholar 

  • Witrzens, B.; Brettell, R. I. S.; Murray, F. R.; McElroy, D.; Li, Z.; Dennis, E. S. Comparison of three selectable marker genes for transformation of wheat by particle bombardment. Aust. J. Plant Physiol. 25:39–44; 1998.

    Article  CAS  Google Scholar 

  • Wu, G.; Cui, H.; Ye, G.; Xia, Y.; Sardana, R.; Cheng, X.; Li, Y.; Altosaar, I.; Shu, Q Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. Theor. Appl. Genet. 104:727–734; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y.; Zhu, L.; Xiao, J.; Huang, N.; McCouch, S. R. Chromosomal regions associated with segregation distortion of molecular markers in F2 backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet. 253:535–545; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S.; Warkentin, D.; Sun, B.; Zhong, H.; Sticklen, M. Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). Theor. Appl. Genet. 92:752–761; 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baochun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Leung, N., Caswell, K. et al. Recovery and characterization of transgenic plants from two spring wheat cultivars with low embryogenesis efficiencies by the bombardment of isolated scutella. In Vitro Cell.Dev.Biol.-Plant 39, 12–19 (2003). https://doi.org/10.1079/IVP2002372

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002372

Key words

Navigation