Skip to main content
Log in

High-frequency callus induction and plant regeneration in Tripsacum dactyloides (L.)

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A protocol for high-frequency callus, somatic embryogenesis, and plant regeneration for Tripsacum is described. Plants were regenerated from complete shoot meristems (3–4 mm) via organogenesis and embryogenesis. In organogenesis, the shoot meristems were cultured directly on a high cytokinin medium comprising 5–10 mgl−1 (22.2–44.4 μM) 6-benzyladenine (BA). The number of multiple shoots varied from six to eight from each meristem. The time required for production of plants from organogenesis was rapid (4–6 wk). In contrast, callus was induced on an auxin medium and continuously cultured on an auxin medium for production of somatic embryos. Prolific callus with numerous somatic embryos developed within 3–4 wk when cultured on an auxin medium containing 5 mgl−1 (22.6μM), 2,4-dichlorophenoxyacetic acid (2,4-D). The number of shoots induced varied from two to five per callus. Regardless of the cultivars used, the frequency of callus induction and plant regeneration was between 48% and 94%. The seed germination procedures also were modified and resulted in a maximum of 60–80% seed germination. Finally, the rate of T-DNA transfer to complete shoot meristems of Tripsacum was high on the auxin medium and was independent of whether super-virulent strains of Agrobacterium were used or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bregitzer, P. Plant regeneration and callus type in barley: effects of genotype and culture medium. Crop Sci. 32:1108–1112; 1992.

    Article  Google Scholar 

  • Brown, C.; Brooks, F. J.; Pearson, D.; Mathias, R. J. Control of embryogenesis and organogenesis in immature wheat embryo callus using increased medium osmolarity and abscissic acid. J. Plant Physiol. 133:727–733; 1989.

    CAS  Google Scholar 

  • Dale, P. J. Embryoids from cultures immature embryos of Lolium multiforum. Z. Pflanzenphysiol. 100:73–77; 1980.

    Google Scholar 

  • Dellaporta, S. L.; Wood, L.; Hicks, J. B. A plant DNA mini preparation: version 11. Plant Mol. Biol. Rep. 1:19–21; 1983.

    Article  CAS  Google Scholar 

  • Dong, J.; Teng, W.; Buchholz, W. G.; Hall, T. C. Agrobacterium-mediated transformation of javanica rice. Mol. Breed. 2:267–276; 1996.

    Article  CAS  Google Scholar 

  • Finer, J. J.; Nagasawa, A. Development of an embryogenic suspension culture of soybean (Glycine max Merill.). Plant Cell Tiss. Organ Cult. 15:125–136; 1988.

    Article  CAS  Google Scholar 

  • Fromm, M. E.; Morrish, F.; Armstrong, C.; Williams, R.; Thomas, J.; Klein, T. M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8:833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gould, J.; Devey, M.; Hasegawa, O.; Ulian, E. C.; Peterson, G.; Smith, R. H. Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95:426–434; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Green, C. E. In vitro plant regeneration in cereals and grasses. In: Thorpe, T. A., ed. Frontiers of plant tissue culture 1978. Calgary: University of Calgary; 1978:411–418.

    Google Scholar 

  • Haydu, Z.; Vasil, I. K. Somatic embryogenesis and plant regeneration from leaf tissue and anthers of Pennisetum purpureum. Theor. Appl. Genet. 59:269–273; 1981.

    Article  Google Scholar 

  • Hirochika, H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12:2521–2528; 1993.

    PubMed  CAS  Google Scholar 

  • Hirochika, H.; Sugimoto, K.; Otsuki, Y.; Tsugawa, H.; Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl Acad. Sci. USA 93:7783–7788; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Hood, E.E.; Chilton, S. W.; Chilton, M. D.; Fraley, R. T. T-DNA and opine synthetic loci in tumors incited by Agrobacterium tumefaciens A281 on soybean and Alfalfa plants. J. Bacteriol. 168:1283–1290; 1986.

    PubMed  CAS  Google Scholar 

  • Jefferson, R. A. Assaying chiameric genes: the GUS gene fusion system. Plant Mol. Biol. Rep. 5:387–405; 1987.

    Article  CAS  Google Scholar 

  • Kidinger, B.; Dewald, C. L. The reproductive versatility of Eastern Gamagrass. Crop Sci. 37:1351–1360; 1997.

    Article  Google Scholar 

  • Kidinger, B.; Vierling, R. A method to enhance germination of eastern gamagrass. Maydica 39:1–4; 1994.

    Google Scholar 

  • Koncz, C.; Schell, J. The promoter of T l DNA gene 5 controls the tissuespecific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204:383–396; 1986.

    Article  CAS  Google Scholar 

  • Lapitan, V. C.; Patena, L. F. Somatic embryogenesis and plant regeneration in type 1E, type 2E and long term callus of maize (Zea mays L.) cv IPB var 4. Phil. J. Crop Sci. 18:46; 1993.

    Google Scholar 

  • Li, Y. G.; Kidinger, B. Plant regeneration from somatic culture of apomictic maize-Tripsacum hybrids. Maize News Lett. 72:84; 1998.

    Google Scholar 

  • Lu, C.; Vasil, I. K. Somatic embryogenesis and plant regeneration from leaf tissues of Panicum maximum Jacq. Theor. Appl. Genet. 59:275–280; 1981.

    Article  Google Scholar 

  • Lu, C.; Vasil, V.; Vasil, I. K. Improved efficiency of somatic embryogenesis in tissue culture of maize (Zea mays L.). Theor. Appl. Genet. 66:285–289; 1983.

    Article  Google Scholar 

  • Mandal, A. B.; Mohanraj, P.; Bandopadhyay, A. K. Inflorescence culture in rice. Int. Rice Res. Notes 18:9–10; 1993.

    Google Scholar 

  • McClintock, B. The significances of responses of the genome to challenge. Science 226:792–801; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Oritz, J. P. A.; Fama, G.; Vallezos, R. H.; Noher-De-Halac, I. Cytodifferentiation and cell organization in somatic embryogenesis of wheat (T. aestivum L.). Biocell, 20:61–66; 1996.

    Google Scholar 

  • Parrot, W. A.; Williams, E. G.; Hilderbrand, D. F.; Collins, G. B. Effects of genotype on somatic embryogenesis from immature cotyledons of soybean. Plant Cell Tiss. Organ Cult. 16:15–21; 1989.

    Article  Google Scholar 

  • Peshke, V. M.; Phillips, R. L. Activation of the maize transposable element suppressor-mutator (Spm) in tissue culture. Theor. Appl. Genet. 81:90–97; 1991.

    Google Scholar 

  • Peshke, V. M.; Phillips, R. L.; Gengenbach, B. G. Discovery of transposable element activity among progeny of tissue culture derived maize plants. Science 238:804–807; 1987.

    Article  Google Scholar 

  • Rengal, Z.; Jelaska, S. Somatic embryogenesis and plant regeneration from seedling tissues of Hordeum vulgare L. J. Plant. Physiol. 124:385–395; 1985.

    Google Scholar 

  • Sairam, R. V.; Seetharama, N.; Shyamala, T.; Devi, P. S. Plant regeneration from scutella of immature embryos of diverse sorghum genotypes. Cereal Res. Commun. 28: 279–285, 2000.

    Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning. A laboratory manual, 2nd edn. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Vasil, V.; Vasil, I. K. Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor Appl. Genet. 56:97–99; 1980.

    Article  Google Scholar 

  • Vasil, V.; Vasil, I. K. Somatic embryogenesis and plant regeneration from tissue cultures of P. americanum and P. americanum×P. purpureum hybrid. Am. J. Bot. 68:864–872; 1981.

    Article  Google Scholar 

  • Wernicke, W.; Brettel, R. Somatic embryogenesis from Sorghum bicolor leaves. Nature 287:138–139; 1980.

    Article  Google Scholar 

  • Yamada, Y. Tissue culture studies on cereals. In: Reinert, J.; Bajaj, Y. P. S., eds. Applied and fundamental aspects of plant cell, tissue and organ culture. Berlin: Springer-Verlag; 1977:144–159.

    Google Scholar 

  • Zhang, S.; Myeong, C.; Phillip, B.; Lemaux, P. Methods and compositions for transformation of cereals using cultured shoot meristematic tissue. Int. Patent # WO 99/15003; 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Goldman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sairam, R.V., Wilber, C., Franklin, J. et al. High-frequency callus induction and plant regeneration in Tripsacum dactyloides (L.). In Vitro Cell Dev Biol -Plant 38, 435–440 (2002). https://doi.org/10.1079/IVP2002314

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002314

Key words

Navigation