Skip to main content
Log in

Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: I. Effects on somatic embryo and root regeneration

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

The effects of increasing concentrations of NaCl and CaCl2 on quince (Cydonia oblonga Mill. BA 29 clone) somatic embryogenesis and adventitious root regeneration were investigated. Leaves collected from in vitro-grown shoots were used as explants and induced for 2d in liquid Murashige and Skoog medium containing 11.3 μM 2,4-dichlorophenoxyacetic acid. Explants were then cultured on semisolid Murashige and Skoog medium enriched with 4.7 μM kinetin and 0.5 μM naphthaleneacetic acid under red light for 25 d and under white light for another 25 d. Two experiments were performed: in the first, NaCl was used at 0,25, 50, 100, and 200 mM in factorial combination with CaCl2 at 3, 9, and 27 mM; in the second, NaCl was applied at 0, 5, 10, 20, 40, and 80 mM in combination with CaCl2 at 0.3, 1.0, and 3.0 mM. Quince leaves revealed the capacity to regenerate somatic embryos and/or adventitious roots. Quantitative and qualitative regeneration from leaves was affected by NaCl treatments: increasing NaCl concentrations, in combination with CaCl2 at 1 mM, led to an increase in the proportion of leaves producing somatic embryos only, and to a decrease of both leaves regenerating roots only and leaves simultaneously producing somatic embryos and adventitious roots. This suggests a beneficial effect of salt stress on the embryogenic process. The regeneration response decreased with increasing salt concentrations and was almost totally inhibited above 50 mM NaCl and 9 mM CaCl2. The presence of CaCl2 in the culture medium apparently mitigated the effects of salt stress, but only when NaCl was applied at 40 mM. NaCl at 5 mM, in the presence of 0.3 or 1 mM CaCl2, was favorable both to somatic embryo and root production. No value of the ratio Na+/Ca2+ was found to be optimal for the regeneration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G. J.; Muir, S. R.; Sanders, D. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose. Science 268:735–737; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Antonelli, M. The regenerative ability of quince BA29 in vitro. Adv. Hort. Sci. 9:3–6; 1995.

    Google Scholar 

  • Ashraf, M. Breeding for salinity tolerance in plants. Crit. Rev. Plant Sci. 13:17–42; 1994.

    Google Scholar 

  • Barakat, M. N.; Abdel-Latif, T. H. In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica 91:127–140; 1996.

    Google Scholar 

  • Beloualy, N.; Bouharmont, J. NaCl-tolerant plants of Poncirus trifoliata regenerated from tolerant cell lines. Theor. Appl. Genet. 83:509–514; 1992.

    Article  Google Scholar 

  • Ben-Hayyim, G.; Kafkafi, U.; Ganmore-Neumann, R. Role of internal potassium in maintaining growth of cultured Citrus callus on increasing NaCl and CaCl2 concentration. Plant Physiol. 85:434–439; 1987.

    PubMed  CAS  Google Scholar 

  • Ben-Hayyim, G.; Kochba, J. Aspects of salt tolerance in NaCl-selected stable cell line of Citrus sinensis. Plant Physiol. 72:685–690; 1983.

    PubMed  CAS  Google Scholar 

  • Bliss, R. D.; Platt-Aloia, K. A.; Thomson, W. W. Osmotic sensitivity in relation to salt sensitivity in germinating barley seeds. Plant Cell Environ. 9:721–725; 1986.

    Article  CAS  Google Scholar 

  • Bush, D. S. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:95–122; 1995.

    Article  CAS  Google Scholar 

  • Chevreau, E.; Leblay, C. The effect of mother plant pretreatment and explant choice on regeneration from in vitro pear leaves. Acta Hort. 336:263–268; 1993.

    Google Scholar 

  • Chi, G. L.; Pua, E. C. Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Sci. 64:243–250; 1989.

    Article  CAS  Google Scholar 

  • Christianson, M. L.; Warnick, D. D. Competence and determination in the process of in vitro shoot organogenesis. Dev. Biol. 95:228–293; 1983.

    Article  Google Scholar 

  • Cramer, G. R.; Epstein, E.; Läuchli, A. Na−Ca interactions in barley seedlings: relationship to ion transport and growth. Plant Cell Environ. 12:551–558; 1989.

    Article  CAS  Google Scholar 

  • Cramer, G. R.; Läuchli, A.; Polito, V. S. Displacement of Ca2+ and Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol. 79:207–211; 1985.

    PubMed  CAS  Google Scholar 

  • Dale, J. E. The control of leaf expansion. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:267–295; 1988.

    Article  Google Scholar 

  • Dimassi-Theriou, K. Response of increasing rates of NaCl or CaCl2 and proline on ‘Mr.S 2/5’ (Prunus cerasifera) peach rootstock cultured in vitro. Adv. Hort. Sci. 12:169–174; 1998.

    Google Scholar 

  • Dolcet-Sanjuan, R.; Mok, D. W. S.; Mok, M. C. Plantlet regeneration from cultured leaves of Cydonia oblonga L. (quince). Plant Cell Rep. 10:240–242; 1991.

    Article  Google Scholar 

  • D'Onofrio, C.; Morini, S. Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: II. Effects on shoot regeneration. In Vitro Cell. Dev. Biol. Plant 38:373–377; 2002.

    Google Scholar 

  • D'Onofrio, C.; Morini, S.; Bellocchi, G. Effect of light quality on somatic embryogenesis of quince leaves. Plant Cell Tiss. Organ Cult. 53:91–98; 1998.

    Article  Google Scholar 

  • Driver, J. A.; Kuniyuki, A. H. In vitro propagation of Paradox walnut rootstock. HortScience 19:507–509; 1984.

    Google Scholar 

  • Druart, Ph. Effect of culture condition and leaf selection on organogenesis of Malus domestica cv. McIntosh ‘WIJCIK’ and Prunus canescens Bois GM79. Acta Hort. 280:117–124; 1990.

    Google Scholar 

  • Ehret, D. L.; Redmann, R. E.; Harvey, B. L.; Cipywnyk, A. Salinity-induced calcium deficiencies in wheat and barley. Plant Soil 128:143–151; 1990.

    Article  CAS  Google Scholar 

  • Eshel, A. Response of Suaeda aegyptiaca to KCl, NaCl and Na2SO4 treatments. Physiol. Plant. 64:308–315; 1985.

    Article  CAS  Google Scholar 

  • Etienne, H.; Lartaud, M. P.; Carron, M. P.; Michaux-Ferrière, N. Use of calcium to optimize long-term proliferation of friable embryogenic calluses and plant regeneration in Hevea brasiliensis (Mull Arg.). J. Exp. Bot. 48:129–137; 1997.

    Article  CAS  Google Scholar 

  • Flowers, T. J.; Troke, P. F.; Yeo, A. R. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28:89–121; 1977.

    Article  CAS  Google Scholar 

  • Galiba, G.; Yamada, Y. A novel method for increasing the frequency of somatic embryogenesis in wheat tissue culture by NaCl and KCl supplementation. Plant Cell Rep. 7:55–58; 1988.

    Article  CAS  Google Scholar 

  • George, E. F. Plant propagation by tissue culture. Part I: The technology, 2nd edn. London: Exegetics Ltd.; 1993.

    Google Scholar 

  • Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31:149–190; 1980.

    Article  CAS  Google Scholar 

  • Gupta, A.; Singhal, G. S. Effect of sodium and calcium chlorides, abscisic acid and proline on callus cultures of Arachis hypogaea L. Biol. Plant. 38:525–529; 1996.

    CAS  Google Scholar 

  • Huetteman, C. A.; Preece, J. E. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Organ Cult. 33:105–119; 1993.

    Article  CAS  Google Scholar 

  • James, D. J. Cell and tissue culture technology for the genetic manipulation of temperate fruit trees. In: Russell, G. E. ed. Biotechnology and genetic engineering reviews, vol. 5. Dorset: Intercept Ltd.; 1987:33–79.

    Google Scholar 

  • Jansen, M. A. K.; Booij, H.; Schel, J. H. N.; Vries, S. C. Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep. 9:221–223; 1990.

    Article  CAS  Google Scholar 

  • Khatun, S.; Flowers, T. J. Effects of salinity on seed set in rice. Plant Cell Environ. 18:61–67; 1995.

    Article  Google Scholar 

  • Kirti, P. B.; Hadi, S.; Kumar, P. A.; Chopra, V. L. Production of sodium chloride-tolerant Brassica juncea plants by in vitro selection at the somatic embryo level. Theor. Appl. Genet. 83:233–237; 1991.

    Article  Google Scholar 

  • Lazzeri, P. A.; Hildebrand, D. F.; Collins, G. B. Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Cell Tiss. Organ Cult. 10:209–220; 1987.

    Article  CAS  Google Scholar 

  • Lynch, J.; Cramer, G. R.; Läuchli, A. Salinity reduces membrane-associated calcium in corn root protoplasts. Plant Physiol. 90:1271–1274; 1987.

    Google Scholar 

  • Marschner, H. Mineral nutrition of higher plants, 2nd edn. London: Academic Press; 1995.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Overvoorde, P. J.; Grimes, H. D. The role of calcium and calmodulin in carrot somatic embryogenesis. Plant Cell Physiol. 35:135–144; 1994.

    CAS  Google Scholar 

  • Pal, A.; Banerjee, A.; Dhar, K. In vitro organogenesis and somatic embryogenesis from leaf explants of Leucosceptrum canum sm. Plant Cell Rep. 4:281–284; 1985.

    Article  CAS  Google Scholar 

  • Piñeros, M.; Tester, M. Calcium channels in higher plant cells: selectivity, regulation and pharmacology. J. Exp. Bot. 48 (special issue): 551–577; 1997.

    Google Scholar 

  • Rengel, Z. The role of calcium in salt toxicity. Plant Cell Environ. 15:625–632; 1992.

    Article  CAS  Google Scholar 

  • Roustan, J. P.; Latche, A.; Fallot, J. Control of carrot embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase. Plant Sci. 67:89–95; 1990.

    Article  CAS  Google Scholar 

  • Silva, P.; Ricardo, C. P. P. Beta-fructosidases and in vitro dedifferentiation-redifferentiation of carrot cells. Phytochemistry 31:1507–1511; 1992.

    Article  CAS  Google Scholar 

  • Subarrao, G. V.; Johansen, C.; Jana, M. K.; Kumar Rao, J. V. D. K. Effects of the sodium/calcium ratio in modifying salinity response of pigeonpea (Cajanus cajan). J. Plant Physiol. 93:471–478; 1990.

    Article  Google Scholar 

  • Sumaryati, S.; Negrutiu, I.; Jacobs, M. Characterization and regeneration of salt- and water-stress mutants from protoplast culture of Nicotiana plumbaginifolia (Vivani). Theor. Appl. Genet. 83:613–619; 1992.

    Article  CAS  Google Scholar 

  • Vajrabhaya, M.; Thanapaisal, T.; Vajrabhaya, T. Development of salt-tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep. 8:411–414; 1989.

    Article  Google Scholar 

  • Webb, A. R.; McAinsh, M. R.; Taylor, J. E.; Hetherington, A. M. Calcium ions as intracellular second messenger in higher plants. Adv. Bot. Res. 22:45–96; 1996.

    Article  CAS  Google Scholar 

  • Whittington, J.; Smith, F. A. Calcium-salinity interactions affect ion transport in Chara corallina. Plant Cell Environ. 15:727–733; 1992.

    Article  CAS  Google Scholar 

  • Zidan, I.; Azaizeh, H.; Neumann, P. M. Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification. Plant Physiol. 93:7–11; 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Morini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'onofrio, C., Morini, S. Increasing NaCl and CaCl2 concentrations in the growth medium of quince leaves: I. Effects on somatic embryo and root regeneration. In Vitro Cell.Dev.Biol.-Plant 38, 366–372 (2002). https://doi.org/10.1079/IVP2002308

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2002308

Key words

Navigation