Skip to main content
Log in

The systematics of Aconaemys (Rodentia, Octodontidae) and the distribution of A. sagei in Chile

Systematik der Gattung Aconaemys (Rodentia, Octodontidae) und Verbreitung von A. sagei in Chile

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The systematic relationships among populations of fossorial Aconaemys species (Rodentia, Octodontidae) were assessed using chromosome variation patterns. Cytogenetic data was used since classical taxonomic studies have yielded contradictory results due to the environmentally induced morphological variation observed in these fossorial rodents. The interpopulational karyotypic stability and lack of intrapopulational polymorphism observed in Aconaemys make chromosome data a good predictor of specific differentiation. A distinct karyotype differing in diploid and number of chromosomal arms (FN) was found at each type locality. This kind and degree of karyotypic differentiation together with molecular data indicate that three species of Aconaemys can be recognized: A. sagei (2 n = 54, FN = 104), A. fuscus (2 n = 56, FN = 108), and A. porteri (2 n = 58, FN = 112). Five populations on the western slope of the Andes (Chile: Nahuelbuta, Tolhuaca, Rio Colorado, Pedregoso, Reigolil, and Huerquehue), formerly ascribed as A. fuscus shared the same karyotype of A sagei from the type locality on the eastern slope of the Andes (Argentina: Pampa Hui-Hui). Thus, karyotypic data let us ascribe these disjunct populations to A. sagei. The classical morpho-species in Aconaemys, altered into the biological species based on chromosomal and molecular differentiation, indicates that all three species occur in Chile. After this survey, the range of A sagei is extended to the northwestern slope of the Andes by more than 300 km.

Zusammenfassung

Die systematischen Beziehungen von Populationen unterirdisch Lebender Aconaemys-Arter (Rodentia, Octodontidae) wurden an Hand chromosomaler Vaniationsmuster untersucht. Die zytoge-netischen Techniken wurden eingesetzt, da klassische taxonomische Studien bisher aufgrund umweltbedingter morphologischer Variation widersprüchliche Ergebnisse geliefert hatten. Die karyotypische Stabilität und das Fehlen eines Polymorphismus innerhalb der Populationen von Aconaemys sprechen für eine diffenentialdiagnostische Brauchbarkeit der Chromosomenvariation für die Unterscheidung von Arten. Für jeden lokalen Typus ergaben sich deutlich unterschiedliche Karyotypen sowohl hinsichtlich der diploiden Chromosomenzahl als auch hinsichtlich der Zahl der Chromosomenarme (FN). Nach der karyotypischen und molekularen Differenzierung ergeben sich drei Arten für die Gattung Aconaemys: A. sagei (2 n = 54, FN = 104), A. fuscus (2 n = 56, FN = 108) und A. porteni (2 n = 58, FN = 112). Fünf Populationen am westlichen Hang der Anden (Chile: Nahuelbuta, Tolhuaca, Rio Colorado, Pedregoso, ReigoLiL und Huerquehue), die bisher A. fuscus zugeschrieben wurden, zeigten denselben Karyotyp wie A. sagei von der Typus-Lokalität am östlichen Hang der Anden (Argentinien: Pampa Hui-Hui). Die karyotypischen Daten erlauben somit eine Zuordnung der disjunkten Populationen zu A. sagei. Die klassischen Morphospezies von Aconaemys, biologisch umrissen durch chromosomale und molekulare Daten, kommen alle drei in Chile vor. Unsere Daten weisen daraufhin, daß das Verbreitungsgebiet von A. sagei über mehr als 300 km bis zum nordwestlichen Hang der Anden erweitert werden muß.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, R. I.; Haiduk, M. W.; Robbins, L. W.; Cadena, A.; Koop, B. F. (1982): Chromosomal studies of South American bats and their systematic implications. In: Mammalian Biology in South America. Ed. by M. A. Mares and H. H. Genoways. Pimatuning Laboratory of Ecology University of Pittsburgh 6, 303–327.

    Google Scholar 

  • Begall, S.; Gallardo, M. H. (2000): Spalacopus cyanus (Rodentia: Octodontidae): an extremist in tunnel constructing and food storing among subterranean mammals. J. Zool. (London) 251, 53–60.

    Article  Google Scholar 

  • Clapperton, C. M. (1993): Nature of environmental changes in South America at the last glacial maximum. Paleogeogr., Paleoclimatol., Paleoecol. 101, 189–208.

    Article  Google Scholar 

  • Clapperton, C. M. (1994): The Quaternary glaciation of Chile: a review. Rev. Chilena Hist. Nat. 67, 369–383.

    Google Scholar 

  • Contreras, L. C.; Torres-Mura, J. C.; Yáñez, J. L. (1987): Biogeography of octodontid rodents: an ecoevolutionary hypothesis. Fieldiana, Zool. 39, 401–411.

    Google Scholar 

  • Gallardo, M. H. (1992): Karyotypic evolution in octodontid rodents based on C-band analysis. J. Mammalogy 73, 89–98.

    Article  Google Scholar 

  • Gallardo, M. H. (1997): A saltation model of karyotypic evolution in the Octodontoidea (Mammalia, Rodentia). In: Chromosomes Today. Vol. 12. Ed. by N. Henriques-Gil, J. S. Parker, and M. J. Puertas. London: Chapman and Hall. Pp. 347–365.

    Article  CAS  Google Scholar 

  • Gallardo, M. H.; Reise, D. (1992): Systematics of Aconaemys (Rodentia, Octodontidae). J. Mammalogy 73, 779–788.

    Article  Google Scholar 

  • Gallardo, M. H.; Kirsch, J. W. A. (2001): Molecular relationships among Octodontidae (Mammalia: Rodentia: Caviomorpha). J. Mammalian Evol. 8, 73–89.

    Article  Google Scholar 

  • Gallardo, M. H.; Bickham, J. W.; Honeycott, R. L.; Ojeda, R. A.; Köhler, N (1999): Discovery of tetraploidy in a mammal. Nature 401, 341.

    Article  CAS  Google Scholar 

  • Greer, J. K. (1965): Mammals of Malleco Province, Chile. Publications of the Museum, Michigan State Univ. Biol. Ser. 3, 49–152.

    Google Scholar 

  • Haffer, J. (1979): Quaternary biogeography of tropical lowland South America. In: The South American Herpetofauna: its Origin, Evolution, and Dispersal. Ed. by W. W. Duellman. Lawrence: University of Kansas Press. Pp. 107–140.

    Google Scholar 

  • Heusser, C. I.; Flint, R. F. (1977): Quatennary glaciations and environments of northern Isla Chiloé, Chile. Geology 5, 305–308.

    Article  Google Scholar 

  • King, M. (1993): Species Evolution. The Role of Chromosome Change. New York: Cambridge University Press.

    Google Scholar 

  • Köhler, N.; Gallardo, M. H.; Contreras, L. C.; Torres-Mura, J. C. (2000): Allozymic variation and systematic relationships of the Octodontidae and allied taxa. (Mammalia, Rodentia). J. Zool. (London) 252, 243–250.

    Article  Google Scholar 

  • Lande, R. (1979): Effective deme size during long-term evolution estimated from rates of chromosomal rearrangements. Evolution 33, 234–251.

    Article  Google Scholar 

  • Lande, R. (1985): The fixation of chromosome rearrangements in a subdivided population with local extinction and colonization. Heredity 54, 323–332.

    Article  Google Scholar 

  • Mares, M. A.; Braun, J. K.; Bárquez, R. B.; Díaz, M. M. (2000): Two new genera and species of halophytic desert mammals from isolated salt flats in Argentina. Ocass. Papers Mus. Texas Tech. Univ. 203, 1–27.

    Google Scholar 

  • Markgraf, V.; Mcglone, M.; Hope, G. (1995): Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems - a southern perspective. Trends Ecol. Evol. 10, 143–147.

    Article  CAS  Google Scholar 

  • Mercer, J. H. (1983): Cenozoic glaciations in the southern hemisphere. Annu. Rev. Earth Planet Sci. 11, 99–132.

    Article  CAS  Google Scholar 

  • Moritz, C.; Patton, J. L.; Schneider, C. I.; Smith, T. B. (2000): Diversification of rainforest faunas: an integrated molecular approach. Annu. Rev. Ecol. Syst. 31, 533–563.

    Article  Google Scholar 

  • Nachman, N. W.; Myers, P. (1989): Exceptional chromosomal mutations in a rodent population are not strongly underdominant. Proc. Nat. Acad. Sciences, USA 86, 6666–6670.

    Article  CAS  Google Scholar 

  • Osgood, W. H. (1943): The mammals of Chile. Field Museum of Natural History, Zool. Series 30, 1–268.

    Google Scholar 

  • Paskoff, R. P. (1977): Quaternary of Chile: the state of research. Quat. Res. 8, 2–31.

    Article  Google Scholar 

  • Patton, J. L. (1967): Chromosome studies of certain pocket mice, genus Perognathus (Rodentia, Heteromyidae). J. Mammalogy 48, 27–37.

    Article  CAS  Google Scholar 

  • Patton, J. L. (1970): Chromosome studies of pocket gophers, genus Thomomys. II. Variation in T. bottae in the American Southwest. Cytogenetics 9, 139–151.

    Article  CAS  Google Scholar 

  • Patton, J. L. (1973): An analysis of natural hybridization between the pocket gophers, Thomomys bottae and Thomomys umbrinus. J. Mammalogy 54, 561–584.

    Article  CAS  Google Scholar 

  • Patton, L.; Brylski, P. V. (1987): Pocket gophers in alfalfa fields: causes and consequences of habitat-related body size variations. Am. Nat. 130, 493–506.

    Article  Google Scholar 

  • Pearson, O. P. (1984): Taxonomy and natural history of some fossorial rodents of Patagonia, southern Argentina. J. Zool. (London) 202, 225–237.

    Article  Google Scholar 

  • Pearson, O. P. (1995): Annotated keys for identifying small mammals living in or near Nahuel Huapi National Park or Lanín National Park, southern Argentina. Mastozool. Neotropical 2, 99–148.

    Google Scholar 

  • Pine, R. H.; Miller, S. D.; Schamberguer, M. L. (1979): Contributions to the mammalogy of Chile. Mammalia 43, 339–376.

    Google Scholar 

  • Reig, O. A.; Bush, C.; Ortell, M. O.; Contreras, J. R. (1990): An overview of evoultion, systematics, population biology, cytogenetic, molecular biology and speciation in Ctenomys. In: Evolution of Subterranean Mammals at the Organismal and Molecular Levels. Ed. by E. Nevo and O. A. Reig. New York: Alan R. Liss. Pp. 71–96.

    Google Scholar 

  • Smith, M. E.; Patton, J. L. (1993): The diversification of South American murid rodents: evidence from mitochondnial DNA sequence data for the Akodontine tribe. Biol. J. Linn. Soc. 50, 149–177.

    Article  Google Scholar 

  • Thaeler, C. S. (1968): Karyotypes of sixteen populations of the Thomomys talpoides complex of pocket gophers (Rodentia, Geomyidae). Chromosoma 25, 172–183.

    Article  Google Scholar 

  • Thaeler, C. S. (1980): Chromosome numbers and systematic relations in the genus Thomomys (Rodentia, Geomyidae). J. Mammalogy 61, 414–422.

    Article  Google Scholar 

  • Venegas, W. (1974): Estudio citogenético en Aco-naemys fuscus fuscus Waterhouse (Rodentia, Octodontidae). Bol. Soc. Biol. Conception 47, 207–214.

    Google Scholar 

  • Vrba, E. (1992): Mammals as a key to evolutionary theory. J. Mammalogy 73, 1–28.

    Article  Google Scholar 

  • Wahrman, I.; Goitein, R.; Nevo, E. (1969): Geographic variation of chromosome forms in Spalax, a subterranean mammal of restricted mobility. In: Comparative Mammalian Cytogenetics. Ed. by K. Benirschke. New York: Springer Verlag. Pp. 30–48.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Gallardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallardo, M.H., Mondaca, F. The systematics of Aconaemys (Rodentia, Octodontidae) and the distribution of A. sagei in Chile. Mamm Biol 67, 105–112 (2002). https://doi.org/10.1078/1616-5047-00015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1078/1616-5047-00015

Keywords

Navigation