Skip to main content
Log in

Molecular data reveals a new genus of blindsnakes within Asiatyphlopinae from India

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The genus Indotyphlops has a widespread distribution in the Indian landmass and Southeast Asia, with 20 reported species. The current classification within the genus is based on morphology. In this study, we sampled all the reported Indotyphlops species from subcontinental India, to resolve relationships within this genus and to understand biogeographic patterns that resulted in the widespread distribution. We generated sequences for five nuclear markers which were used in the global typhlopoid phylogeny and built phylogenetic trees of the superfamily Typhlopoidea. We also carried out divergence time analysis and biogeographic analysis to understand the time and modes of dispersal and diversification of these species. The results show Indotyphlops sensu lato to be polyphyletic, with the clade consisting of I. porrectus and I. exiguus sister to a clade consisting of the southeast Asian typhlopid genera Ramphotyphlops, Anilios, Malayotyphlops, Acutotyphlops, Sundatyphlops, and Indotyphlops sensu stricto. The other clade consists of I. pammeces and I. braminus from the Indian subcontinent and I. albiceps from Southeast Asia. Biogeographical analysis suggests two dispersals from Asia to the Indian landmass—an earlier dispersal from Eurasia into India led to the lineage consisting of I. porrectus and I. exiguus, followed by a later dispersal that evolved into I. pammeces and I. braminus. These results necessitate a taxonomic revision. We propose the genus Pseudoindotyphlops gen. nov. for the clade currently consisting of the most recent common ancestor (MRCA) of I. porrectus and I. exiguus, and all descendants thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Ali J. R. and Aitchison J. C. 2008 Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth-Sci. Rev. 88, 145–166.

    Article  Google Scholar 

  • Ali W., Javid A., Hussain S. M., Azmat H. and Jabeen G. 2016 The amphibians and reptiles collected from different habitat types in District Kasur, Punjab, Pakistan. Pakistan J. Zool. 48, 1201–1204.

    Google Scholar 

  • Boulenger G. A. 1898 Descriptions of two new blind snakes. Ann. Mag. Nat. Hist. Zool. Bot. Geol. 1, 124.

    Article  Google Scholar 

  • Briggs J. C. 2003 The biogeographic and tectonic history of India. J. Biogeogr. 30, 381–388.

    Article  Google Scholar 

  • Chatterjee S. and Scotese C. R. 1999 The breakup of gondwana and the evolution and biogeography of the Indian plate. Proc. Indian Natl. Sci Acad. Part A Phys. Sci. 65, 397–425.

    Google Scholar 

  • Daudin F. M. 1803. Histoire naturelle, générale et particulière des reptiles. vol. 7. pp. 436. Dufart, Paris.

  • Drummond A. J. and Rambaut A. 2007 Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drummond A. J., Suchard M. A., Xie D. and Rambaut A. 2012 Bayesian phylogenetics with BEAUti and the BEAST 1. 7. Mol. Biol. Evol. 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günther A. 1864 The reptiles of British India, Taylor and Francis.

    Book  Google Scholar 

  • Haider J., Malik I. and Shamim S. 2019 Wildlife survey of national parks to assess reptilian biodiversity, AJK. J. Bioresour. Manag. 6.

  • Hedges S. B., Marion A. B., Lipp K. M., Marin J. and Vidal N. 2014 A taxonomic framework for typhlopid snakes from the Caribbean and other regions (Reptilia, Squamata). Caribb. Herpetol. 49, 1–61.

    Google Scholar 

  • Jan G. 1864 Iconographie générale des ophidiens. 3. Livraison. J.B.

  • Lanfear R., Calcott B., Ho S. Y. W. and Guindon S. 2012 PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  • Matzke N. J. 2014 Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970.

    Article  PubMed  Google Scholar 

  • Miralles A., Marin J., Markus D., Herrel A., Hedges S. B. and Vidal N. 2018 Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications. J. Evol. Biol. 31, 1782–1793.

    Article  PubMed  Google Scholar 

  • Nagy Z. T., Marion A. B., Glaw F., Miralles A., Nopper J., Vences M. and Hedges S. B. 2015 Molecular systematics and undescribed diversity of Madagascan scolecophidian snakes (Squamata: Serpentes). Zootaxa 4040, 31–47.

    Article  PubMed  Google Scholar 

  • Nguyen L. T., Schmidt H. A., von Haeseler A. and Minh B. Q. 2015 IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274.

    Article  CAS  PubMed  Google Scholar 

  • Oppel M. 1811 Die Ordnungen, familien und gattungen der reptilien, als prodrom einer naturgeschichte derselben. pp. 110. J. Lindauer, München.

  • Paradis E. and Schliep K. 2019 ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528.

    Article  CAS  PubMed  Google Scholar 

  • Pyron R. A. and Wallach V. 2014 Systematics of the blindsnakes (Serpentes: Scolecophidia: Typhlopoidea) based on molecular and morphological evidence. Zootaxa, https://doi.org/10.11646/zootaxa.3829.1.1.

    Article  PubMed  Google Scholar 

  • Rambaut A. and Drummond A. J. 2013 Tracer v1.6. University of Edinburgh, Edinburgh, UK. (http://tree.bio.ed.ac.uk/software/tracer/).

  • Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S. et al. 2012 MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sidharthan C. and Karanth K. P. 2021 India’s biogeographic history through the eyes of blindsnakes- filling the gaps in the global typhlopoid phylogeny. Mol. Phylogenet. Evol. 157, 107064.

    Article  PubMed  Google Scholar 

  • Sidharthan C., Roy P., Narayanan S. and Karanth K. P. 2022 A widespread commensal loses its identity: suggested taxonomic revision for Indotyphlops braminus (Scolecophidia: Typhlopidae) based on molecular data. Org. Divers. Evol. 23, 169–183.

    Article  Google Scholar 

  • Stoliczka F. 1871 Notes on some Indian and Burmese Ophidians. Proc. Asiat. Soc. Bengal 191-192.

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. 2011 MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trifinopoulos J., Nguyen L., Von Haeseler A. and Minh B. Q. 2016 W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, 232–235.

    Article  Google Scholar 

  • Vidal N., Marin J., Morini M., Donnellan S., Branch W. R., Thomas R. et al. 2010 Blindsnake evolutionary tree reveals long history on Gondwana. Biol. Lett. 6, 558–561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallach V. 2009 Ramphotyphlops braminus (Daudin): a synopsis of morphology, taxonomy, nomenclature, and distribution (Serpentes: Typhlopidae). Hamadryad 34, 34–61.

    Google Scholar 

  • Zhang F., Jantarit S., Nilsai A., Stevens M. I., Ding Y. and Satasook C. 2018 Species delimitation in the morphologically conserved Coecobrya (Collembola: Entomobryidae): A case study integrating morphology and molecular traits to advance current taxonomy. Zool. Scripta 47, 342–356.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the forest departments of Karnataka, Tamil Nadu, and Kerala for granting us collection permits for this project. We also thank Sushil Kumar Dutta, Aniruddha Datta Roy, V. Deepak, Surya Narayanan, P. Gowri Shanker, R. Chaitanya, Amrita Balan, and Aravind for contributing samples to this study. We are also grateful to R. Chaitanya for comments on the manuscript and guidance with the systematics section. CS would also like to thank Surya Narayanan for his help with writing the systematics section of the manuscript. The project was funded by the DBT-IISc partnership programme (22-0303-0007-05-469).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chinta Sidharthan.

Additional information

Corresponding editor: steven m. carr

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 373 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidharthan, C., Roy, P. & Karanth, K.P. Molecular data reveals a new genus of blindsnakes within Asiatyphlopinae from India. J Genet 103, 3 (2024). https://doi.org/10.1007/s12041-023-01457-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-023-01457-3

Keywords

Navigation