Skip to main content
Log in

Molecular variation among isolates belonging to eight races of Phytophthora clandestina

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora clandestina, a serious pathogen of subterranean clover (Trifolium subterraneum), has only been recorded in Australia. A rapid method was used to characterise genetic variation among 61 isolates of P. clandestina belonging to eight pathogenic races based on DNA sequencing and single-strand conformation polymorphism (SSCP) analyses of the β-tubulin gene of the pathogen. The β-tubulin gene among those tested displayed a high degree of variability among isolates. Cluster analysis of the SSCP profiles grouped the 61 isolates into two main clusters (A and B). ClusterAwith 3 subclusters viz; I (race 177), II (race 000) and III (races 001, 121, 101, 143 and 157) and B with race 173 alone. In addition, SSCP of β-tubulin also successfully differentiated between races 173 and 177, the two most prevalent and most virulent of the races studied. This is the first time that the β-tubulin gene has been used to study intra-species variation in this pathogen. In addition to showing relationship among the strains, it also provides a practical means for rapid monitoring of current and future differences in the distribution of P. clandestina strains, giving subterranean clover breeders and farmers a sound basis for the selection/breeding and deployment of appropriate cultivars to counter the predominant strain populations in specific localities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbetti MJ, You MP, Li H, Ma X, Sivasithamparam K (2007) Management of root diseases of annual pasture legumes in Mediterranean ecosystems — a case study of subterranean clover root diseases in the south-west of Western Australia. Phytopathologia Mediterranea 46, 239–258.

    Google Scholar 

  • Bhat RG, Schmitthenner AF (1993) Genetic crosses between physiologic races of Phytophthora sojae. Experimental Mycology 17, 122–129. doi: 10.1006/emyc.1993.1011

    Article  Google Scholar 

  • Bhat RG, Colowit PM, Tai TH, Aradhya MK, Browne GT (2006) Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Disease 90, 161–169. doi: 10.1094/PD-90-0161

    Article  CAS  Google Scholar 

  • Bielenin A, Jeffers SN, Wilcox WF, Jones AL (1988) Separation by protein electrophoresis of six species of Phytophthora associated with deciduous fruit crops. Phytopathology 78, 1402–1408. doi: 10.1094/Phyto-78-1402

    Article  Google Scholar 

  • Bilodeau GJ, Levesque CA, de Cock AWAM, Duchaine C, Briere S (2007)Molecular detection of Phytophthora ramorum by real-time polymerase chain reaction using TaqMan, SYBR Green, and molecular beacons. Phytopathology 97, 632–642. doi: 10.1094/PHYTO-97-5-0632

    Article  CAS  PubMed  Google Scholar 

  • Camele I, Marcone C, Cristinzio G (2005) Detection and identification of Phytophthora species in southern Italy by RFLP and sequence analysis of PCR-amplified nuclear ribosomal DNA. European Journal of Plant Pathology 113, 1–14. doi: 10.1007/s10658-005-8915-1

    Article  CAS  Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genetics and Biology 30, 17–32. doi: 10.1006/fgbi.2000.1202

    Article  CAS  PubMed  Google Scholar 

  • Crespo A, Molina MC, Blanco O, Schroeter B, Sancho LG, Hawksworth DL (2002) rDNA ITS and β-tubulin Gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research 106, 788–795. doi: 10.1017/S095375620200 610X

    Article  CAS  Google Scholar 

  • Forster H, Tyler BH, Coffey MD (1994) Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses. Molecular Plant-Microbe Interactions 7, 780–791.

    Article  Google Scholar 

  • Forster H, Cummings MP, Coffey MD (2000) Phylogenetic relationships of Phytophthora species based on ribosomal ITS I DNA sequence analysis with emphasis on Waterhouse groups V and VI. Mycological Research 104, 1055–1061. doi: 10.1017/S0953756200003087

    Article  CAS  Google Scholar 

  • Gladstones JS (1975) Legumes and Australian agriculture. Journal of the Australian Institute of Agricultural Science 41, 227–240.

    Google Scholar 

  • Gladstones JS, Collins WJ (1983) Subterranean clover as a naturalized plant in Australia. Journal of the Australian Institute of Agricultural Science 49, 191–202.

    Google Scholar 

  • Goldman GH, Temmerman W, Jacobs D, Contreras R, Van Montagu M, Herrera-Estrella A (1993) A nucleotide substitution in one of the beta-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-carbamate. Molecular & General Genetics 240, 73–80. doi: 10.1007/BF00276886

    Article  CAS  Google Scholar 

  • Irzykowska L, Irzykowski W, Jarosz A, Golebniak B (2005) Association of Phytophthora citricola with leather rot disease of strawberry. Journal of Phytopathology 153, 680–685. doi: 10.1111/j.1439-0434.2005.01037.x

    Article  Google Scholar 

  • Ivors KL, Hayden KJ, Bonants PJM, Rizzo DM, Garbelotto M (2004) AFLP and phylogenetic analyses of North American and European populations of Phytophthora ramorum. Mycological Research 108, 378–392. doi: 10.1017/S0953756204009827

    Article  CAS  PubMed  Google Scholar 

  • Kim K-J, Eom S-H, Lee S-P, Jung H-S, Kamoun S, Lee YS (2005) A genetic marker associated with the A1 mating type locus in Phytophthora infestans. Journal of Microbiology and Biotechnology 15, 502–509.

    CAS  Google Scholar 

  • Kong P, Hong C, Richardson PA, Callegly ME (2003a) Single-strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora. Fungal Genetics and Biology 39, 238–249. doi: 10.1016/S1087-1845(03)00052-5

    Article  CAS  PubMed  Google Scholar 

  • Kong P, Hong C, Richardson PA (2003b) Rapid detection of Phytophthora cinnamomi using PCR with primers derived from the Lpv putative storage protein genes. Plant Pathology 52, 681–693. doi: 10.1111/j.1365-3059.2003.00935.x

    Article  CAS  Google Scholar 

  • Kong P, ba]Hong CX, Tooley PW, Ivors K, Garbelotto M, Richardson PA (2004) Rapid identification of Phytophthora ramorum using PCR-SSCP analysis of ribosomal DNA ITS-1. Letters in Applied Microbiology 38, 433–439. doi: 10.1111/j.1472-765X.2004.01510.x

    Article  CAS  PubMed  Google Scholar 

  • Kroon LPNM, Bakker FT, van den Bosch GBM, Bonants PJM, Flier WG (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology 41, 766–782. doi: 10.1016/j.fgb.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection (Guildford, Surrey) 24, 853–863. doi: 10.1016/j.cropro.2005.01.011

    Article  CAS  Google Scholar 

  • May GS, Tsang MLS, Smith H, Fidel S, Morris NR (1987) Aspergillus nidulans beta tubulin genes are unusually divergent. Gene 55, 231–243. doi: 10.1016/0378-1119(87)90283-6

    Article  CAS  PubMed  Google Scholar 

  • McHau GRA, Coffey MD (1994) Isozyme diversity in Phytophthora palmivora: evidence for a southeast Asian centre of origin. Mycological Research 98, 1035–1043. doi: 10.1016/S0953-7562(09) 80430-9

    Article  CAS  Google Scholar 

  • Mirabolfathy M, Alizadeh A, Rahimian H (2000) Morphological, physiological and isozymic comparison of Phytophthora megasperma from pistachio and other hosts. Iranian Journal of Plant Pathology 36, 15–20.

    Google Scholar 

  • Morley FHW (1961) Subterranean clover. Advances in Agronomy 13, 57–123. doi: 10.1016/S0065-2113(08)60957-8

    Article  Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Sciences of the United States of America 86, 2766–2770. doi: 10.1073/pnas.86.8.2766

    Article  CAS  PubMed  Google Scholar 

  • Panaccione DG, Hanau RM (1990) Characterization of two divergent beta tubulin genes from Colletotrichum graminicola. Gene 86, 163–170. doi: 10.1016/0378-1119(90)90275-V

    Article  CAS  PubMed  Google Scholar 

  • Pane A, Agosteo GE, Cacciola SO (2000) Phytophthora species causing crown and root rot of tomato in southern Italy. Bulletin OEPP. EPPO Bulletin. European and Mediterranean Plant Protection Organisation 30, 251–255. doi: 10.1111/j.1365-2338.2000.tb00890.x

    Google Scholar 

  • Powell SC (1970) Subterranean clover, our most important pasture legume. Journal of Agriculture, Victoria 68, 274–277.

    Google Scholar 

  • Purwantara A, Flett SP, Keane PJ (1996) Resistance of nineteen cultivars of subterranean clover to four races of Phytophthora clandestina. Euphytica 91, 351–358. doi: 10.1007/BF00033097

    Article  Google Scholar 

  • Purwantara A, Flett SP, Keane PJ (1998) Variation in pathogenicity among isolates of Phytophthora clandestina. Journal of Phytopathology 146, 587–591. doi: 10.1111/j.1439-0434.1998.tb04759.x

    Article  Google Scholar 

  • Purwantara A, Drenth A, Flett SP, Guppy W, Keane PG (2001) Diversity of Phytophthora clandestina isolated from subterranean clover in southern Australia: analysis of virulence and RAPD profiles. European Journal of Plant Pathology 107, 305–311. doi: 10.1023/A:1011272419130

    Article  CAS  Google Scholar 

  • Ryley MJ, Obst NR (1998) Changes in the racial composition of Phytophthora sojae in Australia between 1979 and 1996. Plant Disease 82, 1048–1054. doi: 10.1094/PDIS.1998.82.9.1048

    Article  Google Scholar 

  • Ryley MJ, Obst NR, Stovold GE (1991) A new race of Phytophthora megasperma f. sp. glycinea on soybean in Australia. Australasian Plant Pathology 20, 97–100. doi: 10.1071/APP9910097

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sandral GA, Dear BS, Brennan J, Ewing MA (1997) The economic value of investment in annual plant improvement for cropping systems of Australia. Report to the Grains Research and Development Corporation, Canberra, Australia.

  • Sekiya TMY, Hayashi K (1993) Detection of mutant sequences by single-strand conformation polymorphism analysis. Mutation Research 288, 79–83. doi: 10.1016/0027-5107(93)90209-X

    CAS  PubMed  Google Scholar 

  • Slabaugh MB, Huestis GM, Leonard J, Holloway JL, Rosato C (1997) Sequence-based genetic markers for genes and gene families: single-strand conformational polymorphisms for the fatty acid synthesis genes of Cuphea. Theoretical and Applied Genetics 94, 400–408. doi: 10.1007/s001220050429

    Article  CAS  Google Scholar 

  • Sullivan KF (1988) Structure and utilization of tubulin isotypes. Annual Review of Cell Biology 4, 687–716. doi: 10.1146/annurev.cb.04.110188.003351

    Article  CAS  PubMed  Google Scholar 

  • Swofford K (2002) ‘PAUP*: Phylogenetic Analysis Using Parsimony and other methods.’ (Sinauer Associates: Sunderland, MA)

    Google Scholar 

  • Taylor PA, Greenhalgh FC (1987) Significance, causes and control of root rots of subterranean clover. In ‘Temperate pastures: their production, use and management.’ (Eds JL Wheeler, CJ Pearson, GE Robards) pp. 249–251. (Australian Wool Corporation/Commonwealth Scientific and Industrial Research Organisation: Melbourne)

    Google Scholar 

  • Taylor PA, Pascoe IG, Greenhalgh FC (1985) Phytophthora clandestina new-species in roots of subterranean clover. Mycotaxon 22, 77–86.

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680. doi: 10.1093/nar/22.22.4673

    Article  CAS  PubMed  Google Scholar 

  • Voigt K, Cozijnsen AJ, Kroymann J, Pöggeler S, Howlett BJ (2005) Phylogenetic relationships between members of the crucifer pathogenic Leptosphaeria maculans species complex as shown by mating type (MAT1-2), actin, and β-tubulin sequences. Molecular Phylogenetics and Evolution 37, 541–557. doi: 10.1016/j.ympev.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  • Walker AK, Schmitthenner AF (1984) Comparison of field and greenhouse evaluations for tolerance to Phytophthora rot in soybean. Crop Science 24, 487–489.

    Article  Google Scholar 

  • Weerakoon ND, Roberts JK, Lehnen LP Jr, Wilkinson JM, Marshall JS, Hardham AR (1998) Isolation and characterization of the single beta-tubulin gene in Phytophthora cinnamomi. Mycologia 90, 85–95. doi: 10.2307/3761016

    Article  CAS  Google Scholar 

  • White TJ, Bruns Y, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal RNA genes for phylogenetics. In ‘PCR protocols: a guide to methods and applications.’ (Eds M Innis, D Gelfand, J Sninsky, I White) pp. 315–322. (Academic Press: San Diego, CA)

    Google Scholar 

  • Yamak F, Peever TL, Grove GG, Boal RJ (2002) Occurrence and identification of Phytophthora spp. pathogenic to pear fruit in irrigation water in the Wenatchee River Valley of Washington State. Phytopathology 92, 1210–1217. doi: 10.1094/PHYTO.2002.92.11.1210

    Article  CAS  PubMed  Google Scholar 

  • You MP, Barbetti MJ, Nichols PGH (2005a) New sources of resistance in Trifolium subterraneum L. to root rot caused by two races of Phytophthora clandestina Taylor, Pascoe and Greenhalgh. Australian Journal of Agricultural Research 56, 271–277. doi: 10.1071/AR04293

    Article  Google Scholar 

  • You MP, Barbetti MJ, Sivasithamparam K (2005b) Characterization of Phytophthora clandestina races on Trifolium subterraneum in Western Australia. European Journal of Plant Pathology 113, 267–274. doi: 10.1007/s10658-005-1226-8

    Article  Google Scholar 

  • You MP, Barbetti MJ, Sivasithamparam K (2006) Occurrence of Phytophthora clandestina races across rainfall zones in south-west Western Australia. Australasian Plant Pathology 35, 85–87. doi: 10.1071/AP05090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X.L., Kong, P., You, M.P. et al. Molecular variation among isolates belonging to eight races of Phytophthora clandestina . Australasian Plant Pathology 38, 608–616 (2009). https://doi.org/10.1071/AP09047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP09047

Keywords

Navigation