Skip to main content
Log in

Stable transformation of Rhizoctonia solani with a modified hygromycin resistance gene

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

A vector for Agrobacterium tumefaciens-mediated transformation of basidiomycetes was constructed by insertion of a modified hygromycin resistance gene into the plant binary vector pBin19. The hygromycin coding region is flanked by a basidiomycete promoter and terminator. Isolates from different anastomosis groupings (AG) of the phytopathogenic fungus Rhizoctonia solani (Kuhn) were transformed with this vector using A. tumefaciens. Hygromycin-resistant transformants were isolated from a single AG6 isolate, but not from AG3 or AG4 isolates. Of six transformants isolated, five showed enhanced growth on agar containing either 25 or 50 ⧎g/mL hygromycin. However, as the hygromycin concentration increased, the difference between the transformants and the control reduced, until at 100 ⧎ g/mL there was no difference. The resistance phenotype was retained through repeated subcultures on non-selective media. The presence of the gene in the transformants was confirmed by PCR analysis and Southern hybridisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bej AK, Perlin MH (1989) A high efficiency transformation system for the basidiomycete Ustilago violaceae. Gene 80, 171–176. doi: 10.1016/0378-1119(89)90263-1

    Article  CAS  PubMed  Google Scholar 

  • Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Research 12, 8711–8721. doi: 10.1093/nar/12.22.8711

    Article  CAS  PubMed  Google Scholar 

  • Bora P, Hardy GEStJ, O’Brien PA (2005) Laccase is required for maceration of lupin radicle tissue by Rhizoctonia solani. Australasian Plant Pathology 34, 591–594. doi: 10.1071/AP05077

    Article  CAS  Google Scholar 

  • Breen A, Singleton F (1999) Fungi in lignocellulose breakdown and biopulping. Current Opinion in Biotechnology 10, 252–258. doi: 10.1016/S0958-1669(99)80044-5

    Article  CAS  PubMed  Google Scholar 

  • Bundock P, Hooykas PJJ (1996) Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proceedings of the National Academy of Science of the United States of America 93, 15272–15275. doi: 10.1073/pnas.93.26.15272

    Article  CAS  Google Scholar 

  • Carling DE (1996) Grouping in Rhizoctonia solani by hyphal anastomosis. In ‘Rhizoctonia species: taxonomy, molecular biology, pathology, and disease control’. (Eds B Sneh, S Jabaji-Hare, SN Dijst) pp. 35–48. (Kluwer Academic Publishers: Dordrecht, the Netherlands)

    Google Scholar 

  • Claus H (2004) Laccases: structure, reactions, distribution. Micron (Oxford, England) 35, 93–96.

    CAS  Google Scholar 

  • Cogoni C (2001) Homology-dependent gene silencing mechanisms in fungi. Annual Review of Microbiology 55, 381–406. doi: 10.1146/annurev. micro.55.1.381

    Article  CAS  PubMed  Google Scholar 

  • Couto SR, Herrera LT (2006) Inhibitors of laccases: a review. Current Enzyme Inhibition 2, 343–352. doi: 10.2174/157340806778699262

    Article  CAS  Google Scholar 

  • Cruickshank RH (1990) Pectic zymograms as criteria in taxonomy of Rhizoctonia. Mycological Research 94, 938–946.

    Article  Google Scholar 

  • deGroot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotechnology 16, 839–842. doi: 10.1038/nbt0998-839

    Article  CAS  Google Scholar 

  • Duncan S, Barton JE, O’Brien PA (1993) Analysis of variation in isolates of Rhizoctonia solani by random amplified polymorphic DNA assay. Mycological Research 97, 1075–1082.

    Article  CAS  Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology 51, 223–256. doi: 10.1146/annurev.arplant.51.1.223

    Article  CAS  PubMed  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the ‘gene-jockeying’ tool. Microbiology and Molecular Biology Reviews 67, 16–37. doi: 10.1128/MMBR.67.1.16-37.2003

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas PJJ (1988) Agrobacterium molecular genetics. In ‘Plant molecular biology manual’. (Eds SB Gelvin, RA Schilperoort, DPS Verma) pp.A4: 1–13. (Kluwer Academic Publishers: Dordrecht, the Netherlands)

    Google Scholar 

  • Keller N, Bergstrom G, Yoder O (1991) Mitotic stability of transforming DNA is determined by its chromosomal configuration in the fungus Cochliobolus heterostrophus. Current Genetics 19, 227–233. doi: 10.1007/BF00336491

    Article  CAS  Google Scholar 

  • Lazo G, Stein P, Ludwig R (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963–967. doi: 10.1038/nbt1091-963

    Article  CAS  PubMed  Google Scholar 

  • Litvintseva A, Henson J (2002) Characterization of two laccase genes of Gaeumannomyces graminis var. graminis and their differential transcription in melanin mutants and wild type. Mycological Research 106, 808–814. doi: 10.1017/S0953756202005841

    Article  CAS  Google Scholar 

  • Lugones K, Schioltmeijer K, Klootwijk R, Wessels J (1999) Introns are necessary for mRNA accumulation in Schizophyllum commune. Molecular Microbiology 32, 681–689. doi: 10.1046/j.1365-2958. 1999.01373.x

    Article  CAS  PubMed  Google Scholar 

  • MacNish GC, O’Brien PA (2005) RAPD-PCR used to confirm that four pectic isozyme (zymogram) groups within the Australian Rhizoctonia solani AG 8 population are true intraspecific groups. Australasian Plant Pathology 34, 245–250. doi: 10.1071/AP05004

    Article  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60, 551–565. doi: 10.1016/S0031-9422(02)00171-1

    Article  CAS  PubMed  Google Scholar 

  • Mellon FM, Little PFR, Casselton LA (1987) Gene cloning and transformation in the basidiomycete fungus Coprinus cinereus: isolation and expression of the isocitrate lyase gene (acu-7). Molecular & General Genetics 210, 352–357. doi: 10.1007/BF00325705

    Article  CAS  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi — progress, obstacles and future trends. Biotechnology Advances 26, 177–185. doi: 10.1016/j.biotechadv.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  • Miller P (1955) V-8 juice as a general purpose medium for fungi and bacteria. Phytopathology 45, 461–462.

    Google Scholar 

  • Mooibroek H, Juipers A, Sietsma J, Punt P, Wessels J (1990) Introduction of hygromycin B resistance into Schizophyllum commune. Molecular & General Genetics 222, 41–48.

    CAS  Google Scholar 

  • Mullins ED, Chen X, Romaine P, Raina D, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91, 173–180. doi: 10.1094/PHYTO.2001.91.2.173

    Article  CAS  PubMed  Google Scholar 

  • Muskens MWM, Vissers APA, Mol JNM, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Molecular Biology 43, 243–260. doi: 10.1023/A:1006491613768

    Article  CAS  PubMed  Google Scholar 

  • O’Brien PA (1994) Molecular markers in Australian isolates of Rhizoctonia solani. Mycological Research 98, 665–671.

    Article  Google Scholar 

  • Parmeter JR, Whitney HS (1970) Taxonomy and nomenclature of the imperfect state. In ‘Rhizoctonia solani, biology and pathology’. (Ed. JR Parmeter) pp. 7–19. (University of California Press: Berkeley, CA)

    Google Scholar 

  • Piers KL, Heath JD, Liang X, Stevens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proceedings of the National Academy of Science of the United States of America 93, 1613–1618. doi: 10.1073/pnas.93.4.1613

    Article  CAS  Google Scholar 

  • Renno D, Saunders G, Smith P, Bull A, Holt G (1992) Mitotic instability of integrated plasmids in Penicillium chrysogenum transformants. Journal of Biotechnology 24, 291–298. doi: 10.1016/0168-1656(92)90038-B

    Article  CAS  PubMed  Google Scholar 

  • Robinson H, Deacon J (2001) Protoplast preparation and transient transformation of Rhizoctonia solani. Mycological Research 105, 1295–1303. doi: 10.1017/S0953756201005159

    Article  Google Scholar 

  • Sawada H, Ieki H, Matsuda I (1995) PCR detection of Ti and Ri plasmids from phytopathogenic Agrobacterium strains. Applied and Environmental Microbiology 61, 828–831.

    CAS  PubMed  Google Scholar 

  • Scholtmeijer K, Wosten H, Springer J, Wessels J (2001) Effect of introns and AT-rich sequences on expression of the bacterial hygromycinBresistance gene in the basidiomycete Schizophyllum commune. Applied and Environmental Microbiology 67, 481–483. doi: 10.1128/AEM.67.1. 481-483.2001

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Kuninaga S, Hyakumachi M, Naito S, Sneh B (2008) Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping. Mycoscience 49, 93–114. doi: 10.1007/s10267-007-0394-0

    Article  CAS  Google Scholar 

  • Sneh B, Burpee LL, Ogoshi A (1991) ‘Identification of Rhizoctonia species.’ (APS Press: St Paul, MN)

    Google Scholar 

  • Sweetingham MW, Cruickshank RH, Wong DH (1986) Pectic zymograms and taxonomy and pathogenicity of the Ceratobasidiaceae. Transactions of the British Mycological Society 86, 305–311.

    Article  CAS  Google Scholar 

  • Ullrich R, Novotny C, Specht C, Froelinger E, Miunoz-Rivas A (1985) Transforming basidiomycetes. In ‘Molecular genetics of filamentous Fungi’. (Ed. W Timberlake) pp. 39–57. (AR Liss Inc.: New York)

    Google Scholar 

  • Wang J, Holden DW, Leong SA (1988) Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proceedings of the National Academy of Science of the United States of America 85, 865–869. doi: 10.1073/pnas.85.3.865

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. O’Brien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., O’Brien, P.A. Stable transformation of Rhizoctonia solani with a modified hygromycin resistance gene. Australasian Plant Pathology 38, 79–84 (2009). https://doi.org/10.1071/AP08081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP08081

Keywords

Navigation