Skip to main content
Log in

Host-parasite interaction between cultivated mushroom, Agaricus bisporus hybrid strain sylvan A15, and the mycoparasite Verticillium fungicola, a causal agent of dry bubble disease

  • Published:
Australasian Plant Pathology Aims and scope Submit manuscript

Abstract

Verticillium fungicola is one of the most economically significant pathogens of the cultivated mushroom Agaricus bisporus throughout the world. A. bisporus basidiomes are reported to be more susceptible to infection by V. Fungicola than the vegetative mycelium. V. Fungicola spores were also reported to be dependent on A. bisporus mycelium. Transmission and scanning electron microscopy were used to investigate the host-pathogen interactions at the mycelial and sporophore stages of A. bisporus. The transmission electron micrographs showed that the V. Fungicola mycelium grows very close to the A. bisporus mycelium. There were no specialised penetration structures or any evidence of direct penetration of the pathogen in the host tissue. The scanning electron micrograph of the necrotic tissue of the diseased mushroom shows clusters of phialoconidia and hyphae of the pathogen in large numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernardo D, Cabo AP, Novaes-Ledieu M, Mendoza GC (2004) Verticillium disease or ‘dry bubblers of cultivated mushrooms: the Agaricus bisporus lectin recognizes and binds the Verticillium fungicola cell wall glucogalactomannan. Canadian Journal of Microbiology 50, 729–735. doi: 10.1139/w04-047

    Article  CAS  PubMed  Google Scholar 

  • Bonnen AM, Anton LH, Orth AB (1994) Lignin degrading enzymes of the commercial button mushroom, Agaricus bisporus. Applied and Environmental Microbiology 60, 960–965.

    CAS  PubMed  Google Scholar 

  • Callow JA (1977) Recognition, resistance and the role of plant lectins in host-parasite interactions. Advances in Botanical Research 4, 1–49. doi: 10.1016/S0065-2296(08)60368-7

    Article  CAS  Google Scholar 

  • Calonje M, Garcia CM, Mendoza C, Galán B, Novaes-Ledieu M (1997) Enzymic activity of the mycoparasite Verticillium fungicola on Agaricus Bisporus fruit body cell walls. Microbiology 143, 2999–3006.

    Article  CAS  Google Scholar 

  • Calonje M, Garcia CM, Cabo AP, Bernardo D, Novaes-Ledieu M (2000) Interaction between the mycoparasite Verticillium fungicola and the vegetative mycelial phase of Agaricus bisporus. Mycological Research 104, 988–992. doi: 10.1017/S0953756299002154

    Article  Google Scholar 

  • Cross MJ, Jacobs L (1969) Some observations on the biology of spores of Verticillium malthousei. Mushroom Science 7, 239–244.

    Google Scholar 

  • Dragt JW, Geels FP, Bruijn WC, Griensven LJLDV(1995) Resistance in wild types of Agaricus bisporus to the mycoparasite Verticillium fungicola var. fungicola. Mushroom Science 14, 679–683.

    Google Scholar 

  • Dragt JW, Geels FP, De Bruijn WC, Van Griensven LJLD (1996) Intracellular infection of the cultivated mushroom Agaricus bisporus by the mycoparasite Verticillium fungicola var. fungicola. Mycological Research 100, 1082–1086.

    Article  Google Scholar 

  • Durrant AJ, Wood DA, Cain RB (1991) Lignocellulose biodegradation by Agaricus bisporus during solid substrate fermentation. Journal of General Microbiology 137, 751–755.

    CAS  Google Scholar 

  • Epstein L, Laccetti L, Staples RC, Hoch HC, Hoose WA (1985) Extracellular proteins associated with induction of differentiation in bean rust uredospore germlings. Phytopathology 75, 1073–1076. doi: 10.1094/ Phyto-75-1073

    Article  CAS  Google Scholar 

  • Epstein L, Laccetti L, Staples RC (1987) Cell-substratum adhesive proteins involved in surface contact responses of the bean fungus. Physiological and Molecular Plant Pathology 30, 373–388. doi: 10.1016/0885-5765 (87)90018-X

    Article  CAS  Google Scholar 

  • Fletcher JT, Gaze RH (2008) ‘Mushroom pest and disease control. A colour handbook.’ (Manson Publishing Ltd: London)

    Google Scholar 

  • Fletcher JT, White PF, Gaze RH (1986) ‘Mushrooms: pests and disease control.’ (Intercept: Newcastle upon Tyne, UK)

    Google Scholar 

  • Hutchison ML, Johnstone K (1993) Evidence for the involvement of the surface active properties of the extracellular toxin tolaasin in the manifestation of brown blotch disease syndromes by Pseudomonas tolaasii on Agaricus bisporus. Physiological and Molecular Plant Pathology 42, 373–384. doi: 10.1016/S0885-5765(05)80013-X

    Article  CAS  Google Scholar 

  • Irazoqui JF, Vides MA, Nores GA (1999) Structural requirements of carbohydrates to bind Agaricus bisporus lectin. Glycobiology 9, 59–64. doi: 10.1093/glycob/9.1.59

    Article  CAS  PubMed  Google Scholar 

  • Jeffries P, Young TWK (1994) ‘Interfungal parasitic relationships.’ (CAB International: Wallingford, UK)

    Google Scholar 

  • Lankinen P, Hildén K, Aro N, Salkinoja-Salonen M, Hatakka A (2005) Manganese peroxidase of Agaricus bisporus: grain bran-promoted production and gene characterization. Applied Microbiology and Biotechnology 66, 401–407. doi: 10.1007/s00253-004-1731-2

    Article  CAS  PubMed  Google Scholar 

  • Largeteau LM, Regnault-Roger C, Savoie JM (2007) Verticillium disease of Agaricus bisporus: variations in host contribution to total fungal DNA in relation to symptom heterogeneity. European Journal of Plant Pathology 118, 155–164. doi: 10.1007/s10658-007-9125-9

    Article  Google Scholar 

  • Leatham GF, Stahmann MA (1981) Studies of laccase of Lentinus edodes: specificity, localisation and association with the development of fruit bodies. Journal of General Microbiology 125, 147–157.

    CAS  Google Scholar 

  • North LJ, Wuest PJ (1993) The infection process and symptom expression of Verticillium disease of Agaricus bisporus. Canadian Journal of Plant Pathology 15, 74–80.

    Article  Google Scholar 

  • Rainey PB, Brodey CL, Johnstone K (1991) Biological properties and spectrum of activity of tolaasin, a lipodepsipeptide toxin produced by the mushroom pathogen Pseudomonas tolaasii. Physiological and Molecular Plant Pathology 39, 57–70. doi: 10.1016/0885-5765(91) 90031-C

    Article  CAS  Google Scholar 

  • Raper CA, Raper JR, Miller RE (1972) Genetic analysis of the life cycle of Agaricus bisporus. Mycologia 64, 1088–1117. doi: 10.2307/3758075

    Article  Google Scholar 

  • Romaine CP, Schlagnhaufer B, Stone M (2002) Apolymerase chain reactionbased test for Verticillium fungicola causing dry bubble disease on the cultivated mushroom, Agaricus bisporus. Applied Microbiology and Biotechnology 59, 695–699. doi: 10.1007/s00253-002-1060-2

    Article  CAS  PubMed  Google Scholar 

  • Soler-Rivas C, Arpin N, Olivier JM, Wichers HJ (1997) Activation of tyrosinase in Agaricus bisporus strains following infection by Pseudomonas tolaasii or treatment with a tolaasin containing preparation. Mycological Research 101, 375–382. doi: 10.1017/ S0953756296002729

    Article  CAS  Google Scholar 

  • Soler-Rivas C, Arpin N, Olivier JM, Wichers HJ (2000) Discoloration and tyrosinase activity in Agaricus bisporus fruit body infected with various pathogens. Mycological Research 104, 351–356. doi: 10.1017/ S0953756299001343

    Article  CAS  Google Scholar 

  • Thapa CD, Jandaik CL (1989) Changes in polyphenol oxidase and peroxidase due to infection of Verticillium fungicola in fruit bodies of Agaricus bisporus. Mushroom Science 12, 765–769.

    Google Scholar 

  • Verbeke MN, van Laere A (1997) The role of laccase dependant reactions for the development of Agaricus bisporus. International Journal of Mushroom Science 2, 3–13.

    CAS  Google Scholar 

  • Wood DA (1979) Degradation of composted straw by the edible mushroom, Agaricus bisporus. Enzymeactivities associated with mycelial growth and fruit body formation. In ‘Straw decay and its effect on disposal and utilization’. (Ed. E Grossbard) pp. 95–104. (Wiley: New York)

    Google Scholar 

  • Wood DA (1980) Production, purification and properties of extracellular laccase of Agaricus bisporus. Journal of General Microbiology 117, 327–338.

    CAS  Google Scholar 

  • Wood DA, Thurston CF (1991) Progress in the molecular analysis of Agaricus bisporus. In ‘Genetics and breeding of Agaricus. Proceedings of the first international seminar on mushroom science, Mushroom Experimental Station, Horst, Netherlands’. pp. 81–86.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shamshad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamshad, A., Clift, A.D. & Mansfield, S. Host-parasite interaction between cultivated mushroom, Agaricus bisporus hybrid strain sylvan A15, and the mycoparasite Verticillium fungicola, a causal agent of dry bubble disease. Australasian Plant Pathology 38, 74–78 (2009). https://doi.org/10.1071/AP08079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1071/AP08079

Keywords

Navigation