Skip to main content

Advertisement

Log in

An integrative method to quantify contaminant fluxes in the groundwater of urban areas

  • Urban Impact on Soils and Groundwater (Guest Editors — Ulf Mohrlok and Thomas Schiedek)
  • Published:
Journal of Soils and Sediments Aims and scope Submit manuscript

Abstract

Background, Aims, and Scope

Groundwater in urban areas is often contaminated and emission sources can be located close to groundwater wells. The delineation of contaminant plumes is difficult because of the various potential emission sources. Thus, detection, quantification and remediation of contaminated sites in a city need more integrative approaches.

Methods

A method has been developed which allows quantification of mass fluxes of contaminants in groundwater between control planes. Budget zones along the flow path are defined to calculate a contaminant balance and to quantitatively reveal input areas. Concentrations and water budgets are used to calculate mass balances for each contaminant. The city of Darmstadt (Germany) was chosen to evaluate the method.

Results

The groundwater monitoring wells (GMWs) upstream of the city showed anthropogenically superposed background values for all naturally occurring inorganic species. The contaminant concentrations increased in the city (probably influenced by road traffic, gas stations, leaking sewers, etc.). Downstream from the city, concentrations usually decreased. Organic compounds typical for urban environments, such as polycyclic aromatic hydrocarbons (PAH), locally exceeded drinking water regulations. In GMWs with high concentrations of organic contaminants in the city or downstream from industrial areas, a significant increase in Fe2+ and Mn2+ could be observed, in some cases coinciding with a decrease in NO3, SO4 and an increase in NH4.

Discussion

For typical urban contaminants, a positive budget was calculated in several zones, which shows that emissions from urban sources are reaching the groundwater. Negative budgets can be mainly explained with diving plumes and degradation. The input calculated from the individual budget zones is usually higher than the input estimated from urban emissions. Differences between the calculated and the estimated input can be explained with additional sources or (bio)degradation processes.

Conclusions

It was confirmed that high concentrations of contaminants do not necessarily correlate with high fluxes. Integrative approaches can reveal areas of high contaminant mass input. The results obtained with the new method are plausible compared to the land use and the estimated urban input. The concentration pattern of Fe2+, Mn2+, SO4 and NO3 is partly due to natural processes, triggered by the degradation of organic matter and organic contaminants.

Recommendations

Since this method includes mass balances and flux calculations, avoiding an overestimation of single point contaminant concentration, it is recommended to use this approach to quantify groundwater contamination in cities. Further research is focusing on the role of urban soils as natural reservoirs for the input of contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleyard S (1995): The impact of urban development on recharge and groundwater quality in a coastal aquifer near Perth, Western Australia. Hydrogeol J 3(2) 65–75

    Article  Google Scholar 

  • Beier M (in preparation): Dissertation thesis, TU Darmstadt, will be available online at 〈http://elib.tu-darmstadt.de/epda/upload/diss-index.cgi?fb=Alle

  • Beier M, Schiedek T, Ebhardt G (2006): Groundwater balance of an urban area — The example of the city of Darmstadt. Geophysical Research Abstracts, Vol. 8, 05048, SRef-ID: 1607-7962/gra/EGU06-A-05048

  • Blackwood DJ, Gilmour DJ, Ellis JB, Revitt DM, Staines A (2005): Exfiltration from Sewers — Is it a Serious Problem? Proceedings of the 10th International Conference on Urban Drainage, Copenhagen/Denmark, 21–26. August 2005, 8 pp

  • Bockelmann A, Ptak T, Teutsch G (2001): An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site. J Contam Hydrol 53(3–4) 429–453

    Article  CAS  Google Scholar 

  • Dohmann M (ed) (1999): Wassergefährdung durch undichte Kanäle. Erfassung und Bewertung. Springer, 305 pp

    Google Scholar 

  • Eiswirth M, Hötzl H (1997): The impact of leaking sewers on urban groundwater. In: Chilton J et al. (eds), Groundwater in the Urban Environment. Volume 1: Problems, Processes and Management. Proceedings of the XXVII IAH Congress on Groundwater in the Urban Environment, pp 399–404

  • Eiswirth M, Wolf L, Hötzl H (2004): Balancing the contaminant input into urban water resources. Environ Geol 46, 246–256

    Article  CAS  Google Scholar 

  • Ellis JB, Revitt DM, Blackwood DJ, Gilmour D (2004): Leaky sewers: Assessing the hydrology and impact of exfiltration in urban sewers, Proceedings of International Conference, Hydrology: Science & Practice for the 21st Century. British Hydrological Society, Int. Conference, Imperial College, London. 12–16 July 2004, pp 266–271

  • Ford M, Tellam JH (1994): Source, type and extent of inorganic contamination within the Birmingham urban aquifer system, UK. J Hydrol 156, 101–135

    Article  CAS  Google Scholar 

  • Gray SR, Becker NSC (2002): Contaminant ûows in urban residential water systems. Urban Water 4, 331–346

    Article  CAS  Google Scholar 

  • Greifenhagen G (2000): Untersuchungen zur Hydrogeologie des Stadtgebietes Darmstadt mit Hilfe eines Grundwasserinformationssystems unter Verwendung von einer Datenbank, Datenmodellierung und ausgewählten statistischen Methoden. Dissertation thesis, TU Darmstadt, 〈http://elib.tu-darmstadt.de/diss/000090/

  • Härig F (1991): Auswirkungen des Wasseraustausches zwischen undichten Kanalisationssystemen und dem Aquifer auf das Grundwasser. Inst. f. Wasserwirtschaft, Hydrologie u. Landwirt. Wasserbau der Universität Hannover, Mitt., 76 pp

    Google Scholar 

  • Herfort M, Ptak T, Liedl R, Teutsch G (1999): A new approach for the investigation of natural attenuation at a field scale. Proceedings of the 1999 Contaminated Site Remediation Conference, 21–25 March, Freemantle, Australia

  • Khalili NR, Scheff PA, Holsen TM (1995): PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29, 533–542

    Article  CAS  Google Scholar 

  • Lerch C (2001): Hydrogeologische Modellierung im Stadtgebiet Darmstadts. unpubl. diploma thesis, TU Darmstadt, 57 pp

  • Lerner DN (1997): Too much or too little: Recharge in urban areas. In: Chilton J et al. (eds), Groundwater in the Urban Environment. Volume 1: Problems, Processes and Management. Proceedings of the XXVII. IAH Congress on Groundwater in the Urban Environment, pp 41–47

  • Lerner DN (ed) (2004): Urban Groundwater Pollution: International Contributions to Hydrogeology 24, Balkema Publisher, 277 pp

  • Löhnert EP (2002): Major Aspects of Urban Hydrogeology in Central Europe — Examples from Germany. In: Howard KWF, Israfilov RG (eds), Current Problems of Hydrogeology in Urban Areas, Urban Agglomerates and Industrial Centers. NATO Science Series IV. Earth Environ Sci 8 243–261

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989): Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297–300

    Article  CAS  Google Scholar 

  • Norra S, Weber A, Kramar U, Stüben D (2001): Mapping of Trace Metals in Urban Soils: The Example of Mühlburg/Karlsruhe, Germany. J Soils Sediments 2, 77–93

    Google Scholar 

  • Pielke M (1992): Bewirtschaftung des Grundwassers urbaner Räume. Mitteileilung des Instituts für Wasserwirtschaft, Hydrologie und landwirtschaftlichen Wasserbau der Universität Hannover, 78, 242 pp

  • Ptak T, Teutsch G (2000): Development and application of an integral investigation method for the characterization of groundwater contamination. Contaminated Soil 2000. Thomas Telford, London, pp 198–205

    Google Scholar 

  • Ptak T, Schwarz R, Holder T, Teutsch G (2000): Ein neues integrals Verfahren zur Quantifizierung der Grundwasserimmission, Teil II: Numerische Lösung und Anwendung in Eppelheim. Grundwasser 4(5) 176–183

    Article  Google Scholar 

  • Schafmeister M-Th (1999): Geostatistik für die hydrogeologische Praxis. Springer, 172 pp

  • Schiedek T, Beier M, Lerch C (2004): Quantification of fuel-related organic contaminants in urban areas of Germany. In: Zhu Y, Balke K-D, Prinz D (eds), Proceed. Water and Development II, Proceed. Hangzhou, China, Geological Publishing House Beijing, P.R.C, pp 57–60

    Google Scholar 

  • Schleyer R, Renner I, Mühlhausen D (1991): Beeinflussung der Grundwasserqualität durch luftgetragene organische Schadstoffe. WaBoLu-Hefte 5/1991, Bundesgesundheitsamt, 96 pp

  • Taylor RG, Cronin AA, Lerner DN, Tellam JH, Bottrell SH, Rueedi J, Barrett MH (2006): Hydrochemical evidence of the depth of penetration of anthropogenic recharge in sandstone aquifers underlying two mature cities in the UK. Appl Geochem 21, 1570–1592

    Article  CAS  Google Scholar 

  • Thomas A, Tellam J (2006): Modelling of recharge and pollutant fluxes to urban groundwaters. Sci Tot Environ 360, 180–195

    Article  Google Scholar 

  • Trojan MD, Maloney JS, Stockinger JM, Eid EP, Lahtinen, MJ (2003): Effects of land use on groundwater quality in the anoka sand plain aquifer of Minnesota. Groundwater 41(4) 482–492

    CAS  Google Scholar 

  • Turkman, A, Aslan, S & Yilmaz, Z (2002): Groundwater Quality and Pollution Problems in the Izmir Region of Turkey. In: Howard KWF, Israfilov RG (ed), Current Problems of Hydrogeology in Urban Areas, Urban Agglomerates and Industrial Centers. NATO Science Series IV. Earth and Environmental Sciences 8, 479–489

  • Varallyay G, Salomons W, Czikos I (1993): Long-term environmental risks for soils, groundwaters and sediments in the Danube catchment area: The Danube chemical time bombs project. Land Degrad Rehabil 4(4) 421–432

    Article  Google Scholar 

  • Voronov AN, Shvarts AA, Kuzmitskaya OV (1999): Hydrogeological problems in the St. Petersburg region. In: Chilton J (ed), Groundwater in the Urban Environment, Selected City Profiles. International Contributions to Hydrogeology 21, 69–74

  • Vroblesky DA, Chapelle FH (1994): Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation. Wat Resour Res 30(5) 1561–1570

    Article  CAS  Google Scholar 

  • Wiedemeier TH, Swanson MA, Wilson JT, Kampbell DH, Miller RN, Hansen JE (1995): Patterns of intrinsic bioremediation at two U.S. Air Force Bases. In: Hinchee, RE, Wilson, JT, Downey, DC Columbus (eds), 3. International In Situ and On-Site Bioreclamation Symposium, San Diego, Ca/USA, 1995, 24.–27. Apr, Battelle Press, OH, USA 3 (1) 31–51

    Google Scholar 

  • Wolf L, Eiswirth M, Hötzl H (2003): Assessing sewer-groundwater interaction at the city scale based on individual marker species distributions. RMZ Materials & Geoenvironment 50(1) 423–426

    Google Scholar 

  • Wolf L, Klinger J, Hoetzl H, Mohrlok U (2007): Quantifying Mass Fluxes from Urban Drainage Systems to the Urban Soil-Aquifer System. J Soils Sediments 7(2) 85–95

    Article  CAS  Google Scholar 

  • Zilberbrand M, Rosenthal E, Shachnai E (2001): Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the coastal city of Tel Aviv, Israel. J Contam Hydrol 50, 175–208

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schiedek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiedek, T., Beier, M. & Ebhardt, G. An integrative method to quantify contaminant fluxes in the groundwater of urban areas. J Soils Sediments 7, 261–269 (2007). https://doi.org/10.1065/jss2007.04.221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/jss2007.04.221

Keywords

Navigation