Skip to main content

Advertisement

Log in

Hydrogeochemical assessment and health-related risks due to toxic element ingestion and dermal contact within the Nnewi-Awka urban areas, Nigeria

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Awka and Nnewi metropolises are known for intensive socioeconomic activities that could predispose the available groundwater to pollution. In this paper, an integrated investigation of the drinking water quality and associated human health risks of contaminated groundwater was carried out using geochemical models, numerical water quality models, and the HHRISK code. Physicochemical analysis revealed that the groundwater pH is acidic. Predicted results from PHREEQC model showed that most of the major chemical and trace elements occurred as free mobile ions while a few were bounded to their various hydrated, oxides and carbonate phases. This may have limited their concentration in the groundwater; implying that apart from anthropogenic influx, the metals and their species also occur in the groundwater as a result of geogenic processes. The PHREEQC-based insights were also supported by joint multivariate statistical analyses. Groundwater quality index, pollution index of groundwater, heavy metal toxicity load, and heavy metal evaluation index revealed that 60–70% of the groundwater samples within the two metropolises are unsuitable for drinking as a result of anthropogenic influx, with Pb and Cd identified as the priority elements influencing the water quality. The HHRISK code evaluated the ingestion and dermal exposure pathway of the consumption of contaminated water for children and adult. Results revealed that groundwater from both areas poses a very high chronic and carcinogenic risk from ingestion than dermal contact with the children population showing greater vulnerability. Aggregated and cumulative HHRISK coefficients identified Cd, Pb, and Cu, to have the highest health impact on the groundwater quality of both areas; with residents around Awka appearing to be at greater risks. There is, therefore, an urgent need for the adoption of a state-of-the-art waste management and water treatment strategies to ensure safe drinking water for the public.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbasnia, A. N., Yousefi, A. H., Mahvi, R., Nabizadeh, M., Radfard, M., & Yousefi, M. (2018). Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human Ecolo Risk Assess, 25(4), 988–1005. https://doi.org/10.1080/10807039.2018.1458596

    Article  CAS  Google Scholar 

  • Adamu, C. I., Nganje, T. N., & Edet, A. (2015). Heavy metal contamination and health risk assessment associated with abandoned barite mines in Cross River State, southeastern Nigeria. Environmental Nanotechnology, Monitoring and Management, 3, 10–21.

    Article  Google Scholar 

  • Agu, K. C., Orji, M. U., Onuorah, S. C., Egurefa, S. O., Anaukwu, C. G., & Okafor, U. C., et al (2014). Influence of solid waste dumps leachate on bacteriological and heavy metals contamination of ground water in Awka. American Journal of Life Science Research, 2(4), 450–457.

    Google Scholar 

  • Agency for toxic substances & Disease Registry (ASTDR) (2018) Toxicological Profile for hazardous substances. US Department of Health and Human Service.

  • American Public Health Association (APHA). (2005). Standard methods for the examination of water and waste water (21st ed.). APHA.

    Google Scholar 

  • American Public Health Association (APHA). (2017). Standard methods for the examination of water and wastewater (23rd ed.). American Public Health Association.

    Google Scholar 

  • Andrei, F., Barbieri, M., Muteto, P.V., Ricolfi, L., Sappa, G., & Vitale, S. (2021). Water resources management under climate change pressure in Limpopo National Park Buffer Zone (Book Chapter). Advances in science, technology and innovation (pp. 129–132).

  • Aribisala, J. O., Awopetu, M. S., Ademilua, O. I., Okunadel, E. A., & Adebayo, W. O. (2015). Effect of climate change on groundwater resources in southwest Nigeria. Journal of Environment and Earth Science, 5(12), 2224–3216.

    Google Scholar 

  • Ayejoto, D. A., Egbueri, J. C., Enyigwe, M. T., Chiaghanam, O. I., & Ameh, P. D. (2021). Application of HMTL and novel IWQI models in rural groundwater quality assessment: A case study in Nigeria. Toxin Reviews. https://doi.org/10.1080/15569543.2021.1958867

    Article  Google Scholar 

  • Bąbel, M., & Schreiber, B. C. (2014). Geochemistry of evaporites and evolution of seawater. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (2nd ed., pp. 483–560). Elsevier.

    Chapter  Google Scholar 

  • Barbieri, M., Barberio, M.D., Banzato, F., Billi, A., Boschetti, T., Franchini, S., Gori, F., & Petitta, M. (2021). Climate change and its effect on groundwater quality. Environmental Geochemistry and Health 1–12.

  • Barbieri, M., Ricolfi, L., Vitale, S., Muteto, P. V., Nigro, A., & Sappa, G. (2019). Assessment of groundwater quality in the buffer zone of Limpopo National Park, Gaza Province, Southern Mozambique. Environmental Science and Pollution Research, 26(1), 62–77.

    Article  CAS  Google Scholar 

  • Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT) (2004). Gridded Population of the World (GPW), Version 3. Columbia University. Available at http://beta.sedac.ciesin.columbia.edu/gpw.

  • Covello, V. T., & Merkhoher, M. W. (2013). Risk assessment methods: approaches for assessing health and environmental risks. Springer.

    Google Scholar 

  • Cui, Z., Qiao, B. Z., & Wu, N. (2011). Contamination and distribution of heavy metals in urban and suburban soils in Zhangzhou City, Fujian, China. Environmental Earth Sciences, 64(6), 1607–1615.

    Article  CAS  Google Scholar 

  • Edet, A. E., Merkel, B. J., & Offiong, O. E. (2004). Contamination risk assessment of fresh groundwater using the distribution and chemical speciation of some potentially toxic elements in Calabar (Southern Nigeria). Environmental Geology, 45, 1025–1035.

    Article  CAS  Google Scholar 

  • Edet, A. E., & Offiong, O. E. (2002). Evaluation of water quality pollution indices for heavy metal contamination monitoring: A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). Geological Journal, 57, 295–304. https://doi.org/10.1023/B:GEJO.0000007250.92458.de

    Article  Google Scholar 

  • Edet, A., Ukpong, A. J., & Ekwere, A. S. (2012). Impact of climate change on groundwater resources: An example from cross River State, Southeastern Nigeria. COLERM Proceedings, 1, 2–22.

    Google Scholar 

  • Egbueri, J. C. (2018). Assessment of the quality of groundwaters proximal to dumpsites in Awka and Nnewi metropolises: A comparative approach. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-018-0004-1

    Article  Google Scholar 

  • Egbueri, J. C. (2020). Heavy metals pollution source identification and probabilistic health risk assessment of shallow groundwater in Onitsha. Analytical Letters. https://doi.org/10.1080/00032719.2020.1712606

    Article  Google Scholar 

  • Egbueri, J. C., Ezugwu, C. K., Ameh, P. D., Unigwe, C. O., & Ayejoto, D. A. (2020a). Appraising the drinking water quality in Ikem rural area (Nigeria) based on chemometrics and multiple indexical methods. Environmental Monitoring and Assessment, 192(5), 308. https://doi.org/10.1007/s10661-020-08277-3

    Article  CAS  Google Scholar 

  • Egbueri, J. C., Ezugwu, C. K., Unigwe, C. O., Onwuka, O. S., Onyemesili, O. C., & Mgbenu, C. N. (2020b). Multidimensional Analysis of the Contamination Status, Corrosivity and Hydrogeochemistry of Groundwater from Parts of the Anambra Basin, Nigeria. Analytical Letters. https://doi.org/10.1080/00032719.2020.1843049

    Article  Google Scholar 

  • Egbueri, J. C., & Unigwe, C. O. (2020). Understanding the extent of heavy metal pollution in drinking water supplies from Umunya, Nigeria: An indexical and statistical assessment. Analytical Letters, 53(13), 2122–2144. https://doi.org/10.1080/00032719.2020.1731521

    Article  CAS  Google Scholar 

  • Egbueri, J. C., Unigwe, C. O., Omeka, M. E., & Ayejoto, D. A. (2021). Urban groundwater quality assessment using pollution indicators and multivariate statistical tools: A case study in southeast Nigeria. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1907359

    Article  Google Scholar 

  • Ekwere, A. S., & Edet, A. (2012). Distribution and chemical speciation of some elements in the ground waters of the Oban area (South-Eastern Nigeria). Research Journal of Environmental Earth Science, 4(3), 207–214.

    CAS  Google Scholar 

  • Emenike, P. C., Nnaji, C. C., Tenebe, I. T., & Agunwamba, J. C. (2019). Hydrogeochemical imprints and spatio-temporal health risk assessment of lead in drinking water sources of Abeokuta, south-western Nigeria. International Journal of Environ Sci Technol, 17, 343–360. https://doi.org/10.1007/s13762-019-025060

    Article  Google Scholar 

  • Ezugwu, C. K., Onwuka, O. S., Egbueri, J. C., Unigwe, C. O., & Ayejoto, D. A. (2019). Multi-criteria approach to water quality and health risk assessments in a rural agricultural province, southeast Nigeria. Hydro Research. https://doi.org/10.1016/j.hydres.2019.11.005

    Article  Google Scholar 

  • Ezeabasili, A. C. C., Okoro, B. U., & Okonkwo, A. U. (2014). Assessment of water supply quality in Awka, Anambra state, Nigeria. STECH, 3(3), 81–93.

    Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gaikwad, S., Dhananjay, M., Wagh, V., Kandekar, A., Kadam, A. (2019). Geochemical mobility of ions in groundwater from the tropical western coast of Maharashtra, India: implication to groundwater quality. Environment, Development and Sustainability, 22(3), 2591–624. https://doi.org/10.1007/s10668-019-00312-9

    Article  Google Scholar 

  • Huang, J., Li, F., Zeng, G., Liu, W., Huang, X., Xiao, Z., Wu, H., Gu, Y., Li, X., He, X., & He, Y. (2016). Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China. Science of the Total Environment, 541, 969–976. https://doi.org/10.1016/j.scitotenv.2015.09.139

    Article  CAS  Google Scholar 

  • IARC. (2011). Overall evaluations of carcinogenicity to humans: as evaluated in IARC monographs volumes 1–82 (at total of 900 agents, mixtures and exposures). International Agency for Research on Cancer, Lyon.

  • Igwe, O., & Omeka, M. E. (2021). Hydrogeochemical and pollution assessment of water resources within a mining area, SE Nigeria, using an integrated approach. International Journal of Energy and Water Resources 1–22.

  • Ilechukwu, I., & Okonkwo, C. (2012). Heavy metal levels and physicochemical parameters of potable water in Nnewi, Anambra state, Nigeria. Archives of Applied Science Research, 4(5), 2094–2097.

    Google Scholar 

  • Junaid, M., Hashmi, M. Z., Malik, R. N., & Pei, D. S. (2016). Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review. Environmental Science and Pollution Research, 23, 20151–20167. https://doi.org/10.1007/s11356-016-7463-x

    Article  CAS  Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Kimbrough, D. E., Cohen, Y., & Winer, A. M. (1999). A critical assessment of chromium in the environment: Critical review. Environmental Sciences, 29(1), 1–46.

    CAS  Google Scholar 

  • Kumar, V., Parihar, R.D., Sharma, A., Bakshi, P., Sidhu, G.P.S., Bali, A.S., Karaouzas, I., Bhardwaj, R., Thukral, A.K., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2019). Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.124364

  • Lwanyaga, J., Kasedde, H., & Kirabira, J. (2019). Effect of Temperature on Mineral Precipitation Sequence of Lake Katwe Brine during Evaporation. Current Journal of Applied Science and Technology, 33(6), 1–12. https://doi.org/10.9734/cjast/2019/v33i630104

    Article  CAS  Google Scholar 

  • Mgbenu, N., & Egbueri, J. C. (2019). The hydrogeochemical signatures, quality indices and health risk assessment of water resources in Umunya district, southeast Nigeria. Applied Water Science, 9(1), 22. https://doi.org/10.1007/s13201-019-0900-5

    Article  CAS  Google Scholar 

  • Mohebbi, M. R., Saeedi, R., Montazeri, A., Vaghefi, K. A., Labbafi, S., Oktaie, S., Abtahi, M., & Mohagheghian, A. (2013). Assessment of water quality in groundwater resources of Iran using a modified drinking water quality index (DWQI). Ecolo Indicators, 30, 28–34. https://doi.org/10.1016/j.ecolind.2013.02.008

    Article  CAS  Google Scholar 

  • Momoh, S. O., Mgbemena, C. O., Agbadua, S. A., & Matthew, D. O. (2013). The physicochemical efect of leachates on ground water within Okpuno-Egbu Umudim Dumpsite Nnewi, Anambra state Nigeria. DIU Journal of Science and Technology, 8(2), 25–32.

    Google Scholar 

  • Moran, D., Kanemoto, K., Jiborn, M., Wood, R., Többen, J., & Seto, K. C. (2018). Carbon footprints of 13,000 cities. Environmental Research Letters. https://doi.org/10.1088/1748-9326/aac72a

    Article  Google Scholar 

  • Morounke, S. G., Ayorinde, J. B., Benedict, A. O., Adedayo, F. F., Adewale, F. O., Oluwadamilare, I., Sokunle, S. S. & Benjamin, A. (2017). Epidemiology and Incidence of Common Cancers in Nigeria. J Cancer Biol Res, 5(3), 1105.

    Google Scholar 

  • Onunkwo, A. A., Nwagbara, J. O., & Ahiarakwem, C. A. (2014). Assessment of heavy metals in Nnewi underground water. International Journal of Engineering Research and Development, 10(11), 1–5.

    Google Scholar 

  • Neris, J. B., Olivares, D. M., Velasco, F. G., Luzardo, F. H. M., Correia, L. O., & González, L. N. (2019). HHRISK: A code for assessment of human health risk due to environmental chemical pollution. Ecotoxicology and Environmental Safety, 170, 538–547. https://doi.org/10.1016/j.ecoenv.2018.12.017

    Article  CAS  Google Scholar 

  • Nfor, B. N., Olobaniyi, S. B., & Ogala, J. E. (2007). Extent and distribution of groundwater resources in parts of Anambra state, Southeastern Nigeria. Journal of Applied Sciences and Environmental Management, 11(2), 215–221.

    Google Scholar 

  • Nganje, T. N., Agbor, E. E., Adamu, C. I., Ukpong, A. J., et al. (2019). Public health challenges as a result of contaminated water sources in Kumba, Cameroon. Environmental Geochemistry and Health, 42(4), 1167–1195.

    Article  Google Scholar 

  • Nganje, T. N., Hursthouse, A. S., Edet, A., Stirling, D., & Adamu, C. I. (2015). Assessment of the health risk, aesthetic and agricultural quality of rain water, surface water and groundwater in shale bedrock areas of southeastern Nigeria. Water Quality Exposure and Health, 7(2), 153–178.

    Article  CAS  Google Scholar 

  • Nigerian National System of Cancer Registries (2013) Federal Ministry of Health of Nigeria, Federal Secretariat Complex Shehu Shagari Way, Garki, Abuja P.M.B. 083, Garki-Abuja ISBN number: 978-978-955-030-2

  • Nnorom, I. C., Ewuzie, U., & Eze, S. O. (2019). Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon, 5(1), e01123.

    Article  Google Scholar 

  • Okoro, B. U., Ezeabasili, A. C. C., & Dominic, C. M. U. (2014). Quality assessment of traditional hand dug wells in Awka, Anambra State, Nigeria. GJEDT, 3(3), 34–38.

    Google Scholar 

  • Okoye, N. M., Orakwe, L. C., & Nwachukwu, P. C. (2016). Groundwater quality mapping using GIS: A case study of Awka, Anambra state, Nigeria. IJEMR, 6(2), 579–584.

    Google Scholar 

  • Obasi, P. N., & Akudinobi, B. B. (2020). Potential health risk and levels of heavy metals in water resources of lead–zinc mining communities of Abakaliki, southeast Nigeria. Applied Water Science, 10, 184. https://doi.org/10.1007/s13201-020-01233-z

    Article  CAS  Google Scholar 

  • Okamkpa, J. R. O., & M.E., Igwe, O. & Iyiokwu M.U. (2022). An integrated geochemical and spatiotemporal assessment of groundwater resources within an industrial suburb, Southeastern Nigeria. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-022-00183-3

    Article  Google Scholar 

  • Omeka, M. E., & Igwe, O. (2021). Heavy metals concentration in soils and crop plants within the vicinity of abandoned mine sites in Nigeria: An integrated indexical and chemometric approach. International Journal of Environmental Analytical Chemistry 1–19

  • Omeka, M. E., Igwe, O., & Unigwe, C. O. (2022). An integrated approach to the bioavailability, ecological, and health risk assessment of potentially toxic elements in soils within a barite mining area, SE Nigeria. Environmental Monitoring and Assessment, 194(3), 1–30.

    Article  Google Scholar 

  • Onyemesili, O. O., Egbueri, J. C., & Ezugwu, C. K. (2020). Assessing the pollution status, ecological and health risks of surface waters in Nnewi urban, Nigeria: Implications of poor waste disposal. Environ Forensics. https://doi.org/10.1080/15275922.2020.1850564

    Article  Google Scholar 

  • Onyido, A. E., Nwangwu, U. C., Aribodor, D. N., Umeanaeto, P. U., Ugha, C. N., Ugwu, F. M., & Onwude, C. O. (2014). Bacterial pathogens associated with wild-caught housefies in Awka metropolis of Anambra state. Southeastern Nigeria. New York Science, J7(12), 1–8.

    Google Scholar 

  • Pan, L., Ma, J., Hu, Y., Su, B., et al. (2016). Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi Province, China. Environmental Science and Pollution Research, 23, 19330–19340. https://doi.org/10.1007/s11356-016-7044-z

    Article  CAS  Google Scholar 

  • Parkhurst, D.L., & Appelo, C. A. J. ((2013)) Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43. Available only at http://pubs.usgs.gov/tm/06/a43/.

  • Proshad, R., Islam, S., Roy, T., Zhang, D., et al. (2020). Appraisal of heavy metal toxicity in surface water with human health risk by a novel approach: A study on an urban river in vicinity to industrial areas of Bangladesh. Toxin Reviews. https://doi.org/10.1080/15569543.2020.1780615

    Article  Google Scholar 

  • Rahman, M. M., Islam, M. A., Bodrud-Doza, M., Muhib, M. I., Zahid, A., Shammi, M., Tareq, S. M., & Kurasaki, M. (2017). Spatio-temporal assessment of groundwater quality and human health risk: A case study in Gopalganj. Expo Health. https://doi.org/10.1007/s12403-017-0253-y

    Book  Google Scholar 

  • Ricolfi, L., Barbieri, M., Muteto, P. V., Nigro, A., Sappa, G., Vitale, S. (2020b). Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environmental Geochemistry and Health, 1–13.

  • Ricolfi, L., Barbieri, M., Muteto, P. V., Nigro, A., Sappa, G., & Vitale, S. (2020a). Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province. Southern Mozambique. Environmental Geochemistry and Health, 42(9), 2733–2745.

    Article  CAS  Google Scholar 

  • Sajil-Kumar, P. J. (2019). Assessment of corrosion and scaling potential of the groundwater in the Thanjavur district using hydrogeochemical analysis and spatial modeling techniques. SN Applied Sciences, 1(5), 395. https://doi.org/10.1007/s42452-019-0423-6

    Article  CAS  Google Scholar 

  • Shankar, B. S., & Raman, S. (2019). A novel approach for the formulation of Modified Water Quality Index and its application for groundwater quality appraisal and grading. Human and Ecological Risk Assessment. https://doi.org/10.1080/10807039.2019.1688638

    Article  Google Scholar 

  • Standards Organization of Nigeria (SON). (2015). Nigerian standard for drinking water quality. 554, 13-4. Nigerian Industrial Standard.

  • Subba Rao, N. (2012). PIG: A numerical index for dissemination of groundwater contamination zones. Hydrolo Processes, 26(22), 3344–3350. https://doi.org/10.1002/hyp.8456

    Article  CAS  Google Scholar 

  • Subba Rao, N., Sunitha, B., Adimalla, N., & Chaudhary, M. (2019). Quality criteria for groundwater use from a rural part of Wanaparthy District, Telangana State, India, through ionic spatial distribution (ISD), entropy water quality index (EWQI) and principal component analysis (PCA). Environmental Geochemistry and Health, 42, 579–599. https://doi.org/10.1007/s10653-019-00393-5

    Article  CAS  Google Scholar 

  • Tüzen, M. (2003). Determination of heavy metals in soil, mushroom, and plant samples by atomic absorption spectrometry. Microchemical Journal, 74(3), 289–297.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (US-EPA). (2004) Risk assessment guidance for superfund. Vol. I: Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). Washington, DC: U.S. Environmental Protection Agency.

  • Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-019-00039-3

    Article  Google Scholar 

  • Unigwe, C. O., Egbueri, J. C., & Omeka, M. E. (2022). Geospatial and statistical approaches to nitrate health risk and groundwater quality assessment of an alluvial aquifer in SE Nigeria for drinking and irrigation purposes. Journal of the Indian Chemical Society, 100479.

  • US-EPA (US Environmental Protection Agency). (1989). Risk assessment guidance for superfund, Vol. 1, Human health evaluation manual (Part A). Office of Emergency and Remedial Response.

  • U.S. EPA. (2016). Integrated Risk Information System - USEPA-IRIS. U. S. Environmental Protection Agency.

  • US-EPA (US Environmental Protection Agency). (2017). National recommended water quality criteria-aquatic life criteria table and human health criteria table. https://www.epa.gov.wqc/nationalrecommended-water-quality criteria-aquatic-life-criteria-table.

  • Wang, H. B., Xu, J. M., Gomez, M. A., Shi, Z. L., Li, S. F., Zang, S. Y. (2019). Arsenic concentration, speciation, and risk assessment in sediment of the Xijiang River basin, china. Environmental Monitoring and Assessment, 191(11), 6631–66312.

    Article  Google Scholar 

  • Wagh, V. M., Panaskar, D. B., Mukate, S. V., Gaikwad, S. K., Muley, A. A., & Varade, A. M. (2018). Health risk assessment of heavy metal contamination in groundwater of Kadava River Basin. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-018-0496-z

    Article  Google Scholar 

  • World Health Organization (WHO) (2017) Guidelines for drinking water quality (2nd ed.). World Health Organization Geneva.

  • Wu, J., Li, P., & Qian, H. (2011). Groundwater quality in Jingyuan County, a semi-humid area in Northwest China. Journal of Chemistry, 8(2), 787–793.

    CAS  Google Scholar 

  • Xiao, Y., Liu, K., Hao, Q., Li, J., Zhang, Y., Cui, W., & Pei, Q. (2021) Hydrogeochemical features and genesis of confined groundwater and health perspectives for sustainable development in urban Hengshui, North China plain. Journal of Chemistry.

  • Yang, M., Fei, Y., Ju, Y., & LiH, M. Z. (2012). Health risk assessment of groundwater pollution—A case study of typical City in North China Plain. Journal of Earth Science, 23(3), 335–348. https://doi.org/10.1007/s12583-012-0260-7

    Article  CAS  Google Scholar 

  • Yang, X., Duan, J., Wang, L., Li, W., Guan, J., Beecham, S., & Mulcahy, D. (2015). Heavy metal pollution and health risk assessment in the Wei River in China. Environmental Monitoring and Assessment, 187, 111. https://doi.org/10.1007/s10661-014-4202-y

    Article  CAS  Google Scholar 

  • Ye, C., Mao, J., Ren, Y., Li, Y., Lin, Y., Power, I. M., & Luo, Y. (2018). Salt crystallization sequences of nonmarine brine and their application for the formation of potassium deposits. Aquatic Geochemistry, 24, 209–229. https://doi.org/10.1007/s10498-018-9340-3

    Article  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Michael E. Omeka contributed to conceptualization, manuscript design, data analysis, manuscript writing, numerical indices computation/PHREEQC and HHRISK modeling, review and revision. Johnbosco C. Egbueri contributed to conceptualization, manuscript design, review and revision.

Corresponding author

Correspondence to Johnbosco C. Egbueri.

Ethics declarations

Competing interests

The authors declare that there are no competing interests regarding this research.

Human and animal rights

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omeka, M.E., Egbueri, J.C. Hydrogeochemical assessment and health-related risks due to toxic element ingestion and dermal contact within the Nnewi-Awka urban areas, Nigeria. Environ Geochem Health 45, 2183–2211 (2023). https://doi.org/10.1007/s10653-022-01332-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01332-7

Keywords

Navigation